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Violations of the stable unit treatment value assumption (SUTVA) are
a common threat to identification of the effects of policies causing
the resorting of agents between treated and untreated groups. We
show that in such contexts the difference-in-differences estimator can
be decomposed into three effects (autarky, resorting and contamina-
tion). We also show that demand and supply elasticities are “sufficient
statistics” for the relative size of these effects and that there exist a
trade-off in terms of heterogeneity between SUTVA and parallel trends
assumption violations. We illustrate our argument by studying a large
placed-based tax break for the construction of residential housing
in Uruguay. First, we obtain a series of difference-in-differences es-
timates of the effect of the policy on housing prices and show that
they differ considerably depending on the degree of heterogeneity
between subsidized and unsubsidized areas. Consistent with our
conceptual framework, prices fall substantially when comparing het-
erogeneous areas, and very little or not at all when comparing similar
areas. Second, we estimate a structural model of supply and demand
for neighborhoods that rationalizes those different estimates and al-
lows us to recover the three effects as well as the welfare impact of the
policy. Overall, we find that SUTVA violations account for 25% of the
effect on subsidized areas and lead to a sizable underestimation (24
p.p.) of the incidence of the tax break on subsidized areas.
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Las violaciones del supuesto de no interferencia (SUTVA en inglés)
dificultan la evaluación de políticas cuando estas causan movimiento
de agentes entre grupos de tratamiento y control. En este trabajo se
muestra que en esos casos el estimador de diferencias-en-diferencias
se puede descomponer en tres efectos (autarquía, relocalización y
contaminación), y que las elasticidades de demanda y oferta son “esta-
dísticos suficientes” para medir la participación relativa de esos tres
efectos y que existe un trade-off entre evitar violaciones de SUTVA y
tener tendencias paralelas. El trabajo examina las implicancias empíri-
cas de este argumento estudiando una política que otorga importantes
exoneraciones tributarias a la construcción de viviendas en Uruguay.
En primer lugar, se estiman una serie de diferencias-en-diferencias
del impacto de la política y se encuentra que su magnitud varía con-
siderablemente según el grado de heterogeneidad entre las áreas de
tratamiento y control escogidas: los precios caen mucho más cuando
se comparan áreas heterogéneas y poco o nada cuando se comparan
áreas más similares. En segundo lugar, se estima un modelo de oferta y
demanda de vivienda que racionaliza esas estimaciones, descompone
el estimador de diferencias-en-diferencias en sus tres efectos, y mide
el impacto de la política en el bienestar. Las violaciones de SUTVA
suponen un 25 % del efecto en las áreas subsidiadas y generan que el
estimador de diferencias-en-diferencias subestime la incidencia de la
exoneración tributaria en 24 puntos porcentuales.
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1 | INTRODUCTION

Non-experimental studies of policies causing the resorting of agents between treatment
and control groups may suffer from violations of the crucial stable unit treatment value
assumption (SUTVA) (Donaldson, 2015). Place-based interventions are prominent examples
of these type of policies (Kline and Moretti, 2014b). Because these policies are usually
not randomized, researchers rely on non-experimental methods - such as difference-in-
differences (DiD) - to study their effects (Baum-Snow and Ferreira, 2015). Identifying the
causal effects of these policies using these methodologies requires no violations of SUTVA.
While most of the recent developments in the difference-in-differences methodology have
focused on the parallel trends assumption and the staggered treatment, less attention has
been paid to the SUTVA violations (Roth et al., 2023).

In this paper, we discuss the difference-in-differences estimator in the presence of viola-
tions to SUTVA in a context of resorting of agents between control and treatment groups.
We show that in these contexts the difference-in-differences estimator can be decomposed
into three effects. First, an “autarky effect” captures what would happen to treated areas
if there were in isolation, and therefore no relocation effects existed. Second, a “resorting
effect” captures the effect on treated areas caused by the inflow of agents into those areas.
Third, a “control unit contamination” captures the effect on the control area caused by the
outflow of agents away from this area.

We then apply these insights to the study of a place-based policy giving substantial tax
breaks for housing development in lagging areas of Montevideo, the capital city of Uruguay.
We start the analysis by using administrative data on the universe of housing transactions in
Montevideo before and after the policy and estimating a series of difference-in-differences
with housing prices as our dependent variable. We find three difference-in-differences
results that are consistent with our conceptual framework. First, when using all housing
transactions in the city, we find a large negative effect of the policy of around 18% of
the average transaction price. Second, when we follow the common practice of using
only observations close to the border, estimates are very small negatives or zeros. Third,
consistent with the presence of contamination effects, the absolute magnitude of these
border estimates increases with a measure of heterogeneity between both sides of the border
and when we use control units located further away from the border.

With a simple linearization of a model of the supply and demand of housing in a city,
we provide an analytical formula showing that the relative size of each of the three effects
contained in the difference-in-differences estimator depends on the demand-side substitu-
tion patterns between neighborhoods as well as the supply elasticities of the neighborhoods.
Importantly, more similar areas are likely to be closer demand-side substitutes, and therefore
be subject to the highest contamination effects. This contradicts the intuition behind choos-
ing very similar units to define treatment and control groups in difference-in-differences
designs, such as comparing areas across policy borders or using of matching techniques
(Neumark and Kolko, 2010; Chen et al., 2022).

Using our decomposition formula, we analyze three types of situations in which the
assumptions on the network structure may or may not justify the implementation of a
difference-in-differences approach. First, when the relocation of agents causes spillovers
that are very local, it can be reasonably assumed that distant areas experience no spillovers.
In those cases, identification of the effects of the policy can be achieved by comparing the
treated area versus distant ones (Delgado and Florax, 2015; Clarke, 2017; Butts, 2021). A
prominent example of this approach is Kline and Moretti (2014a), who drop neighboring
counties from their control group in their evaluation of the impact of the Tennessee Valley
Authority (TVA).
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In many economic settings, the resorting of agents from untreated into treated areas
implies that truly untreated areas may not exist, or may be hard to credibly detect and
justify. In those contexts, researchers may still recover the impact of the policy under the
assumption that all areas are small enough such that the mobility of agents does not affect
prices and quantities in non-treated areas. Busso et al. (2013)’s study of Empowerment Zones
constitute an example of this second type of situation in which difference-in-differences
estimates can recover the effect of the policy.

A third type of situation occurs when the policy is large enough such that its effects
extend to non-targeted areas. Consider, for instance, the case of common supply-side
subsidies for housing construction which target entire neighborhoods in a given city, such
as the Opportunity Zones program in the US. These policies redirect housing demand from
non-subsidized into subsidized areas, potentially causing housing prices to fall in non-
subsidized areas. This effect of the policy on non-subsidized areas constitutes a violation of
SUTVA, and thus invalidates difference-in-differences designs.

We add an additional and final layer of structure to our analysis and further use our
transaction data to estimate a structural model of the supply and demand of housing
across Montevideo’s neighborhoods. We model the demand for housing as the discrete
choice problem of choosing a neighborhood within a city. The application of discrete choice
techniques to spatial settings was pioneered by Bayer et al. (2007) and has been applied to
a variety of contexts, both within cities (Bayer et al., 2016; Almagro and Domınguez-Iino,
2019; Anagol et al., 2021) and across cities (Diamond, 2016; Alves, 2021). We estimate the
price elasticity of the housing demand in a nested logit model using the introduction of
the tax break to build a set of supply-shifting instruments. The housing supply in the
model is characterized by a log-linear supply function for each neighborhood (Saiz, 2010;
Baum-Snow and Han, 2023). We internally calibrate a common inverse supply elasticity for
all neighborhoods with a procedure that is similar to Berger et al. (2022). This elasticity is the
one matching the difference-in-difference object implied by our equilibrium model with our
reduced form difference-in-differences estimate. As is common in the quantitative spatial
literature, our main insights from the model arise from solving for a set of counterfactual
equilibria (Ahlfeldt et al., 2015; Donaldson, 2017; Monte et al., 2018; Caliendo et al., 2019;
Fajgelbaum et al., 2019).

We show that our model fits the data in terms of reproducing the parallel trends that we
find in the descriptive analysis. Moreover, by solving for a series of counterfactual equilibria,
we estimate directly the three additive effects behind the difference-in-differences estimator.
We find that the “resorting effect” accounts for 40% of the “autarky effect” and that the
“contamination effect” represents 25% of the total effect of the policy on the subsidized
area, which is given by the sum of the autarky and resorting effects. Additionally, we
show that the SUTVA violation causes the reduced-form difference-in-differences analysis to
underestimate the share of the subsidy that reaches consumers by more than 24 percentage
points. Once accounted for contamination, the incidence of of the subsidy is larger, and the
difference in the estimated effect of the incidence of the subsidy amounts to around 30%
of Uruguay’s GDP per capita in the year the policy was introduced. Our methodological
argument is thus quantitatively relevant in terms of policy implications.

Finally, we use the equilibrium counterfactuals from our estimated model to revisit the
relationship we find in the reduced-form analysis between the heterogeneity across control
and treated units and the size of the difference-in-differences estimate. Consistent with our
decomposition formula, we confirm that contamination is positively correlated with both
the homogeneity and the diversion ratios between those units. Importantly, this implies
that the lower values of the reduced-form differences-in-difference estimates we obtained
for more homogeneous units are caused by higher bias caused by contamination and are
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not just about treatment heterogeneity. This posits a note of caution to common research
designs that try to maximize the comparability between control and treatment group.

Our paper contributes to three main strands of literature. First, we contribute to the
literature on causal inference in urban and regional economics. In their comprehensive
review of this literature, Baum-Snow and Ferreira (2015) include difference-in-differences as
one of the main techniques for obtaining causal estimates. The authors highlight how the
re-sorting of individuals between treatment and control areas constitutes a serious threat
to identification in difference-in-differences designs in spatial settings. This threat can be
seen as a special case of dealing with spatial spillovers in difference-in-differences settings,
a topic that has received attention from several previous works (Clarke, 2017; James and
Smith, 2020; Butts, 2021; Huber and Steinmayr, 2021; Myers and Lanahan, 2022).

Currently, successful identification of the effects of place-based policies with difference-
in-differences designs in the presence of spillovers is restricted to two contexts. First, spatial
spillovers can be handled by defining large enough treatment and control units such that
spillovers are contained within those units (Feyrer et al., 2017; Huber and Steinmayr, 2021).
Second, researchers may employ successive “donuts” or “rings” around the treatment area
to flexibly capture the effect of the spillovers (James and Smith, 2020; Butts, 2021; Myers
and Lanahan, 2022). As spillovers eventually fade away far enough from the treatment, the
comparison of treated areas against those spillover-free areas yields an average treatment
effect on the treated (Clarke, 2017). However, when policies are large enough, those spillover-
free areas may not exist or may be hard to credibly find. Also, natural (sea, mountains) or
man-made (parks, highways) barriers may restrict the construction of far-enough rings. We
provide a methodological framework to empirically study the effects of place-based policies
in such contexts.

Second, we contribute to the literature on the evaluation of place-based policies that
subsidize the development of lagging areas. As highlighted by Kline and Moretti (2014b),
evaluating the success of these programs requires going beyond their impact on specific
variables and adopting a consistent equilibrium framework. One key lesson from spatial
equilibrium models is that the efficiency impact of place-based policies depends on the
degree by which the policy induces economic agents to relocate from untreated into treated
areas (Moretti, 2011; Busso et al., 2013; Serrato and Zidar, 2016). We show that the existence
of heterogeneous mobility patterns of agents across areas can generate wrong conclusions
about the efficiency of placed-based policies when estimates are obtained by comparing
only certain areas.

Third, we contribute to the burgeoning literature on the methodological improvement of
difference-in-differences estimates (de Chaisemartin and D’Haultfœuille, 2021; Roth et al.,
2023). Recently, there has been substantial progress in designs with multiple periods and
variation in treatment timing (Callaway and Sant’Anna, 2021; Sun and Abraham, 2021;
Goodman-Bacon, 2021), potential violations in parallel trends (Rambachan and Roth, 2023;
Roth and Sant’Anna, 2023), and improved inference (Ferman and Pinto, 2019). In their
review of the state of the literature, Roth et al. (2023) include spillovers as one of the main
areas for future research in this literature, with a special mention to spatial spillovers. We
analyze a specific type of spatial spillover that we believe has high economic relevance.
These are spillovers generated by the movement of economic agents across space in reaction
to place-based policies. We stress the limitations of difference-in-differences designs in
terms of recovering structural parameters of interest in those circumstances and show how
structural methods can inform those estimates.
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2 | DIFFERENCE-IN-DIFFERENCES IN EQUILIBRIUM

2.1 | Setup

We now study DiD estimates with a simple model of supply and demand for homogeneous
housing units in the real state market across neighborhoods within a city. In the model,
the demand side consists of households who decide if they want to buy a housing unit in
a given neighborhood within the city or remain outside the city. The supply side is given
by property-owners who choose the number of housing units they want to sell in each
neighborhood. Both households and property-owners make a decision in each period which
is independent of previous and future periods.

Neighborhood choice is the main focus of households when evaluating where to live in
contemporary large cities characterized by sharp amenity differences between neighbor-
hoods. There are two main determinants of households’ discrete choice between neighbor-
hoods. These are neighborhoods’ housing prices and amenities. The latter captures both the
relatively fixed aspects of the attractiveness of a neighborhood, such as the distance to the
sea, and also the time-varying ones, such as crime.

For the supply side of the model, we assume that atomistic housing owners decide the
number of housing units to sell in each neighborhood and period. Higher prices induces a
higher supply of houses for sell and this relationship between prices and quantities offered
is represented by an upwards sloping supply function.

2.2 | Decomposition of the DiD Estimator

At its very core, a difference-in-differences (DiD) estimator can be written as:

β̂DiD = (yPostTreated − yPreTreated) − (yPostNotTreated − yPreNotTreated) (1)

with y denoting the variable of interest. The change in the untreated observations is
used to compute changes over time, which is then subtracted from the change in the treated
observations in order to identify the policy’s effect. In situations in which the policy induces
the resorting of agents between the treated and control groups, the DiD no longer identifies
the effect of the policy (Baum-Snow and Ferreira, 2015). We next provide a decomposition
of the DiD under those circumstances, which will help us rationalize the patterns observed
in our DiD estimates seen in the previous section.

Without loss of generality, we highlight the various components underlying the DiD
estimator using the real state market as an example. The outcome variable in our case is
the price of housing, pjt, with j denoting neighborhood and t denoting time. In order to
fix ideas, we start with two extreme cases of resorting of agents between the control and
the treatment groups. First, we show the case of autarky, in which there is no substitution,
and then we move to perfect substitution. After presenting these two extreme cases, we
introduce a generalised decomposition for two neighbourhoods. Throughout the section
we focus on demand-side resorting of households and thus abstract away from supply-side
substitution. Supply-side substitution could easily be accommodated in this framework.

Figure 1 highlights an autarky situation in which consumers are only willing to consider
housing in one particular neighborhood j ∈ {A,B}, but not the other. Implementing a
supply-side subsidy in neighborhood A would first shift supply outwards in neighborhood
A. Because of lower prices, demand for housing in neighborhood A expands. Neither
demand nor supply are affected in neighborhood B and thus prices do not change in this
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Quantity

Price

Quantity

Price

F I G U R E 1 Neighborhoods A and B are independent products

neighborhood. The estimated DiD in this scenario is equal to the difference in prices between
periods 2 and 1 in neighborhood A:

β̂AUT
DiD = (pA2 − pA1 ) − (pB2 − pB1 ) = pA2 − pA1

Note that in this situation of autarky the DiD estimator does capture the effect of the
policy on the targeted areas. We show next that this is not the case when there is resorting
of agents between the two areas.

Quantity

Price

Quantity

Price

F I G U R E 2 Neighborhoods A and B are perfect substitutes

Figure 2 highlights a situation in which consumers consider housing in different districts
to be perfect substitutes. Consistent with this assumption of perfect substitutability, prices
at t = 1 coincide between both neighborhoods. Again, a supply-side policy is enacted in
district A, pushing housing prices pA1 downwards until pA2 . However, due to the assumed
pattern of substitution, there is a new round of effect which we index as happening at t = 3.
Prices in neighborhood A increase until pA3 because consumers from district B are switching
locations. Estimating the effect of the same policy using the DiD approach now yields the
following:

β̂DiD = (pA3 − pA1 ) − (pB3 − pB1 )

= (pA3 − pA2 + pA2 − pA1 ) − (pB3 − pB2 + pB2 − pB1 )

= (pA2 − pA1 ) + (pA3 − pA2 ) − (pB3 − pB2 )

We see that in the case of perfect substitution between different districts, the estimated
DiD effect contains not only the autarky effect from before, but also the price increase due
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to higher demand for housing in the subsidized district A, as well as the price decrease in
district B. As indicated in Equation 2, we call the additional demand effect in district A
“resorting”, and the price change in district B as “contamination”. This last term “contam-
inates” the DiD effect because it causes that this estimation techniques does not recover
the effect of the policy on the targeted areas, which is given by the sum of the other two
terms in Equation 2. We next introduce a new formula that helps to understand which are
determinants of the relative size of contamination relative to the other two effects. That
relationship thus defines the relative size of the bias of the DiD estimate of the effect of the
policy on the targeted area.

β̂DiD = (pA2 − pA1 )︸ ︷︷ ︸
Autarky

+(pA3 − pA2 )︸ ︷︷ ︸
Resorting

− (pB3 − pB2 )︸ ︷︷ ︸
Contamination

(2)

2.3 | DiD Estimator from Supply and Demand

Having discussed two extreme versions of demand patterns, we now impose slightly more
economic structure to understand the estimated DiD effect in terms of demand and supply.
We specify demand for housing in a neighborhood j at a given vector of market prices p by
Q

j
D(p). The inverse housing supply is specified by P

j
S(q

j). With two neighbourhoods, of
which one is subsidized while the other is not, the estimated DiD effect can be expressed by
the following approximation:

βDiD ≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky shock

×

[
1︸︷︷︸

Autarky term

+
∂QA

D

∂pA
×

∂PA
S

∂qA︸ ︷︷ ︸
Resorting term

−
∂QA

D

∂pA
×

∂PB
S

∂QB
D

×DRA,B︸ ︷︷ ︸
Contamination term

]
(3)

Equation 3 highlights that any estimated DiD effect is actually a scaled version of the
policy’s effect in autarky. The scaling factor depends crucially on the responsiveness of
demand and supply in the two neighborhoods, and also on the demand diversion ratio
between the two. A full derivation of Equation 3 can be found in Appendix B.

In Equation 3, ∂QA
D

∂pA × ∂PA
S

∂qA indicates how much of the “scaling” of the policy’s effect in

autarky is due to the resorting effect, and −
∂QA

D

∂pA × ∂PB
S

∂qB ×DRA,B how much is due to the
contamination effect. The latter of these two effects deserves special attention as it is the one
causing the DiD estimator to be biased and unable to recover the true effect of the policy on
treated areas. Note that this effect increases linearly with respect to each of its three terms.
Although this formula has the strong limitation of featuring only two areas, we later show
that the linear relationship between contamination and the diversion ratio holds when we
estimate and solve for a specific model with many neighborhoods.

The explicit formula for the role of the contamination effect in Equation 3 allows us
to analyze some of the main identification strategies and assumptions followed by the
previous literature. A first strand of the literature assumes that there is a sufficiently far
away area such that it is unaffected by the policy and use the difference-in-differences
estimate between the area of interest and this area. This strategy is often referred as “ring
approach” and Kline and Moretti (2014a); Clarke (2017); Butts (2022) are some examples
of relevant papers implementing it. Note that the formula in Equation 3 shows that this is
analog to assume that the diversion ratio between the area of interest (A) and the control
area (B) is zero (DRA,B = 0). This assumption implies that the contamination effect is zero
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and thus the DiD does recover the true effect of the policy on targeted areas. A limitation
of this strategy is that, when policies are “large”, all areas could be in principle affected
and it may be difficult to find an area in which DRA,B = 0. The formula shows that when
researchers have estimates of the demand for different neighbors, they can directly test this
hypothesis of the existence of an unaffected area.

A second strand of the literature assumes that there is a large enough number of areas
such that each of them is too small to have an effect on the rest through resorting. Examples
of this strategy are Busso et al. (2013); Chen et al. (2022). The formula in Equation 3 shows

that this assumption is analog to assume that ∂QA
D

∂pA = 0, implying that in these contexts the
DiD captures only the autarky effect.

This discussion of some of the relevant methods in the literature through the lens of
the formula already anticipated a key takeaway from Equation 3 for empirical work. The
relative sizes of the three effects (autarky, resorting and contamination) can be estimated
using only supply and demand elasticities. In this sense, the elasticities of supply and
demand constitute “sufficient statistics” for the relative size of the effect (Saez, 2001; Chetty,
2009). Interestingly, because of the multiplicative way in which these elasticities enter the
formula, researchers could discard contamination with only demand or (inverse) supply
elasticity estimates if they happen to be close to zero. This situation is the one illustrated by
the two strand of literatures above and can also happen in contexts with very elastic housing
supply elasticities. The reverse, a situation where contamination is likely to be relevant and
bias DiD estimates, occurs in contexts with relatively inelastic housing supplies Baum-Snow
and Han (2023). Note that this discussion refers to the relative sizes of the three effects. In
order to get the absolute value of those effects, one needs an estimate of the autarky term,
which is a counterfactual object.

Finally, this formula can be generalized to having more than one subsidized and unsub-
sidized areas. In this case, the DiD estimator can be written as:

β̂DiD ≈ (pA2 − pA1 )︸ ︷︷ ︸
βAUT

DiD

+
∂PA

S

∂qA
×

( ∑
u∈US

∂QA
D

∂pu
×

∂Pu
S

∂qu
×
[∑
s∈S

∂Qu
D

∂ps
× (ps2 − ps1)

])
︸ ︷︷ ︸

Resorting from Unsubsidized Area(s)

+
∂PA

S

∂qA
×

( ∑
s∈S\A

∂QA
D

∂ps
× (ps2 − ps1)

)
︸ ︷︷ ︸

Resorting from other Subsidized Area(s)

−
∂PB

S

∂qB
×

(∑
s∈S

∂QB
D

∂ps
× (ps2 − ps1)

)
︸ ︷︷ ︸

Contamination from Reference Area

(4)

The formula has similar terms than before, but it also has some differences. First, in this
case, the resorting effect in equilibrium can be negative or positive. The resorting of agents
can attenuate the autarky effect if the net effect is to bring people to area A, or increase it if
the net effect is to send people to other subsidized areas (i.e. area A gains from the control
area B, but loses to other subsidized areas). Second, the contamination effect is similar as
before but now it is increased compared to the previous example when only one region
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receives the subsidy. The reason is that the unsubsidized area now changes more because
people are leaving to all the subsidized areas. Finally, now the relative size of the effects
cannot be computed anymore knowing only the supply and demand elasticities, since these
objects are weighted by the original changes of prices induced by the policy. In this sense,
the elasticities are not anymore a “sufficient statistic” for the relative size of the effects.

3 | INSTITUTIONAL CONTEXT AND DATA

3.1 | Institutional Context

The policy we analyze is a typical tax break for residential investment in lagging urban areas,
similar to the Opportunity Zones (OZ) program in the US. In contrast to OZ tax breaks,
which might be directed to commercial or residential development, LVIS tax breaks were
only directed at residential development. We refer to the policy by its familiar acronym in
Spanish of “LVIS” (Ley de Vivienda de Interés Social). Although the name of the policy refers
to the promotion of social Housing, homes that benefited from the program did not have to
be occupied by low-income households and could be freely sold at market prices.

Tax breaks in LVIS are quite large, especially when compared to US’s Opportunity Zones.
González-Pampillón (2022) estimates that LVIS tax benefits equaled 20% of the cost of the
projects. The main component of those tax benefits is the total exemption from the country’s
corporate tax of 25%. Beyond this main component, LVIS projects were fully exempted
from the value added tax on inputs, and units devoted to the rental market were partially
exempted from the income and wealth taxes. Because these tax breaks were so large, we
expect a negative effect of the policy on the price of housing in subsidized areas.

The law that created LVIS was approved by the Uruguayan parliament in August 2011.
Its implementation details, including the designation of the subsidized zones, were only
defined in October of that year. We thus take October 2011 as the starting date of the
policy. The policy was substantially modified in June 2014, adding price ceilings and other
restrictions that made it less attractive to investors. Because those modifications would
substantially change the impact of the policy on housing prices, we end our period of
analysis in May 2014.

We focus our analysis on the impact of LVIS tax breaks in the department of Montevideo,
which holds the homonymous 1.3 million capital city of Uruguay and concentrated 70%
of LVIS projects (Berrutti, 2017). LVIS in Montevideo subsidized residential development
in medium and low-income neighborhoods. The upper half of Figure 3 presents a map of
the subsidized and unsubsidized areas in the Montevideo department. The area without
subsidies is located along the southeast coast of the city, by the Rio de la Plata river, and
concentrates most of the middle and high-income neighborhoods. The subsidized area
covers almost three quarters of Montevideo’s urban area, including the central and older
areas of the city as well as working-class neighborhoods.

Due to the generosity of its tax breaks, the policy had huge impacts on the location of
residential investment in Montevideo. Berrutti (2017) shows that the share of the subsidized
area in terms of square meters of construction permits went from around 20% before the
policy to more than 60% in the first three years of the policy. Another measure of the huge
quantitative relevance of the policy is the total amount of investments benefited by LVIS tax
cuts. González-Pampillón (2022) estimates that the total investment approved during the
first five years of the law amounts to 1.5% of the country’s GDP.

The mechanics of the law implied that developers had to apply for tax benefits, and
obtain approval for their projects before beginning the construction phase. As a result of
this application process plus the usual phase of construction, the first few LVIS projects only
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reached completion by 2013, and the first sales of LVIS properties occurred in 2014, with
most sales being made in the following years (González-Pampillón, 2022). This timing is
important because it implies that almost no LVIS projects and very few LVIS sales were
completed during the period we study. This has two key implications for the context of
our study. First, it motivates us to abstract from the positive externalities of LVIS projects
documented by González-Pampillón (2022) and Borraz et al. (2021) for later years.1 Being
able to disregard positive spillovers of the policy on housing prices simplifies our analysis,
and further reinforces our hypothesis of a negative effect of the policy on the housing prices
of subsidized areas.2 Second, since almost no LVIS projects and units were completed
during our period of study, there is no contemporaneous shift in the number of units for
sale. Thus the expected negative effect of the policy on prices fully operates through the
capitalization of future lower construction costs into current housing prices. This hypothesis,
which we robustly verify in the data, is supported by three elements. First, the generosity
of the subsidy, estimated on 20% the cost. Second, the large relative size of the targeted
area in terms of Montevideo’s housing market. Third, that although there were no units
built during our period of analysis, the number of applications, which are publicly available
online, signaled agents that supply in the targeted neighborhoods was indeed going to
expand substantially in the next few years.

The public data on developers’ applications to obtain LVIS subsidies further allows us to
characterize the new housing supply generated by the policy as being provided by highly
atomistic producers. Of the 1,073 projects presented until October 2022, the average firm
had 0.1% of the projects and 0.1% of the housing units. The maximum share attained by any
single firm was 1.9% and 2.0% of the number projects and housing units, respectively. This
scenario of atomistic suppliers constitutes a fourth reason explaining the negative effect
of the policy on prices and further motivates the perfectly-competitive assumption for the
supply side in our model.

3.2 | Data

We use four sources of data. The most important one is the universe of housing transactions
from the National Registry Office in Uruguay for the period 2010-2014. These data includes
the exact price and day for each housing sale as well as a measure of the area transacted.
Uruguay is a high-income country according to the World Bank classification, and has the
lowest levels of informality in the region. So this database of registered housing transactions
is representative of the highly formal housing market of Montevideo.

The transaction data further includes a unique property number, which allows us to
match that database with the registry of the National Cadaster of Uruguay, our second main
source of data. This matching gives us the exact location of the parcel where the property is
located and a set of housing characteristics, including the property area. We use this area
from the cadaster when the area in the sales data is missing. The cadaster data does not exist
for the years we analyze, and thus we use the earliest dataset available, which corresponds
to 2016. We drop the top and bottom percentile of the area and price distribution of the
transaction dataset to avoid extreme values from affecting our estimates.

1These positive externalities have also been documented for LIHTC projects in the US (Baum-Snow and Marion,
2009; Diamond et al., 2018). Over time, the resorting of heterogeneous agents can significantly change urban
amenities across the urban space Almagro and Domınguez-Iino (2019).

2Housing prices reflect future rents, and thus, in principle, these future rents could be positively affected by the
spillovers of the new projects. However, González-Pampillón (2022) shows that spillover of new LVIS projects
are highly localized and disappear after 200 meters. Based on this evidence, we argue that during our period
of analysis, when few projects were constructed, it would be very hard for agents to anticipate the location
and impact of future projects.
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The third source of data is a geo-coded map of the areas subsidized by LVIS, similar to
Figure 3. This geospatial data allows us to assign a subsidized or non-subsidized status to
each housing transaction in the city, and to calculate the exact distance of those transactions
to the borders of the policy. The fourth and last source of data is the national population
census of 2010. These data provides census tracts’ average years of education, which we use
to define neighborhoods and nests, as we explain in the next subsection.

Table 1 presents summary statistics on the housing transaction data separately for
subsidized and unsubsidized areas and before and after the introduction of the policy. The
prices per squared meter and the sizes of houses are lower in the subsidized than in the
unsubsidized areas. This is consistent with the policy subsidizing lagging areas in the city.
Housing prices grow over time in all areas because our years of study coincide with a period
of strong economic growth in Uruguay.

Pre Post

Subsidized Unsubsidized Subsidized Unsubsidized

No. Obs. 10, 035 6, 793 13, 112 8, 861

Mean Square Meter Price (USD/m2) 701 1, 446 955 1, 894

(505) (675) (680) (874)

Mean Transaction Size (m2) 125 96 123 91

(136) (105) (134) (99)

Note: Standard deviations are provided in parentheses.

TA B L E 1 Housing prices and area by subsidy status in the pre and post periods

In numerous empirical exercises in this paper, we use a set of variables to control for
housing characteristics. These control variables are obtained from the cadaster data except
for distance to the coast, which we computed using the exact location of the transaction.
The set of controls from the cadaster includes the age of the property as well as a set of
categorical variables indicating construction category, construction condition, type of ceiling,
and if there is ongoing construction work on the property.

3.3 | Neighborhood definition

We complement our general decomposition formula with the estimation and computation
of counterfactual equilibria of a specific model of the supply and demand of housing in
Montevideo. This specific modeling of the equilibrium impacts of the tax break on housing
prices follows a long tradition using discrete-choice techniques to study housing markets
(Bayer et al., 2007; Diamond, 2016; Anagol et al., 2021; Almagro et al., 2022). These techniques
require a partition of the space of the city into exclusive units. Because Montevideo is not
divided in meaningful smaller administrative units, we partition the city into contiguous
and homogeneous units using a spatial clustering algorithm. Throughout the paper we
refer to the resulting units as neighborhoods.

We use the SKATER (Spatial ’K’luster Analysis by Tree Edge Removal) algorithm, which
was developed by Martins et al. (2006) and has four convenient features for the problem
at hand. Differently from regular, non-spatial clustering techniques, this algorithm guar-
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anties spatial contiguity of the resulting units. Second, it allows for the introduction of
a constraint on the minimum number of observations each unit should have. We need
this feature to make sure that each neighborhood has enough transactions to provide the
empirical variation we need to estimate the demand model. Third, the algorithm operates
by maximizing the internal homogeneity of the resulting units in terms of a variable defined
by the researcher. Finally, the procedure allows to set a target number of units. This target
has a lower priority in the functioning algorithm and may not be reached in order to satisfy
the other constraints.

We apply the spatial clustering algorithm separately to subsidized and unsubsidized
areas such that the whole area of each neighborhood falls in only one of those two categories.
We indicate the algorithm to use tracts’ average number of years of education from the 2010
population census to maximize units’ homogeneity. We set a minimum of 10 transactions for
the average number of monthly sales that neighborhoods should have and a target number
of 50 neighborhoods on each area.

The spatial clustering algorithm gives us a total of 49 neighborhoods, 30 subsidized and
19 unsubsidized. In order to introduce richer substitution patterns in our discrete choice
model, we further classify those 49 neighborhoods into the six nests of a nested logit model.
This classification uses the same algorithm employed to define the neighborhoods except
we do not require spatial contiguity for the resulting units and remove the constraint on
the minimum number of monthly sales. Importantly, we allow the algorithm to form nest
joining subsidized and unsubsidized neighborhoods freely. The results of this operation
are presented in the lower half of Figure 3. Each of the six colors in that figure represent a
different nest, the solid line represents the border of the policy, and the lighter lines show
the borders of the neighborhoods.

4 | DIFFERENCE-IN-DIFFERENCES RESULTS

This section presents three sets of difference-in-differences (DiD) estimates of the effect
of the policy. Consistent with our hypothesis on the subsidy having a negative effect on
the prices of the targeted areas, the estimates in the three sets are consistently negative.
However, their magnitude varies greatly depending on which units are included in the
treatment and control groups. While some estimates imply large price reductions suggesting
a highly beneficial impact of the tax break on consumers, others do no reject a zero impact,
which would be consistent with landlords fully appropriating the subsidy. This could be a
simple matter of heterogeneity of treatment effects. However, we show that our results are
consistent with contamination being behind part of that variation. Following the framework
in section Section 2, the presence of contamination introduces the possibility of bias in the
estimates.

4.1 | Benchmark Difference-in-Differences

The general specification for our difference-in-differences regressions is the usual given by
the following equation:

pijt = γj +αt +βTreatj × Postt + f(Xijt) + ϵijt (5)

with pijt denoting the price per square meter of housing transaction i in neighborhood j

at month t. Because each neighborhood is entirely treated or untreated, γj subsumes the
usual Treatj term. Xijt is a vector of housing characteristics.
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F I G U R E 3 Urban Montevideo by Subsidy Status, Neighborhoods and Regions
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Dependent Variable:

USD per Square Meter

(1) (2) (3) (4) (5) (6)

Subsidized × Post-Policy −194∗∗∗ −178∗∗∗ −181∗∗∗ −1 −58 −61

(31) (26) (27) (52) (32) (38)

Housing Characteristics - -

Fixed Effect - Geography Subsidized Subsidized Neighborhood Subsidized Subsidized Neighborhood

Fixed Effect - Time Post-Policy Post-Policy Year × Month Post-Policy Post-Policy Year × Month

No. Obs 38,801 38,801 38,801 7,579 7,579 7,579

Data City-Wide City-Wide City-Wide 500m Buffer 500m Buffer 500m Buffer

Pre-Policy Price per Square Meter 1,002 1,002 1,002 1,112 1,112 1,112

* . . .p < 0.05 ** . . .p < 0.01 *** . . .p < 0.001

Note: Standard errors are clustered at the neighborhood level.

Note: Polynomial of degree three used to control for housing characteristics.

TA B L E 2 Difference-in-Differences Regressions

Columns 1 to 3 of Table 2 presents our first set of DiD estimates. The defining feature
of this first set is that it considers all transactions in the city and using the basic DiD
specification. Column 1 only has the three traditional DiD terms, namely those indicating
treatment group, treatment timing, and the interaction of these two. The second column adds
a third-order polynomial on the housing characteristics described in Subsection 3.2. These
include built area, distance to the coast, construction year, and four variables measuring
construction quality. The last column adds month-year and neighborhood fixed effects.
These DiD estimates presented in Table 2 are complemented with graphical evidence in
Figure A.2 and Figure A.5 in the Appendix.

The three first columns in Table 2 yield consistently negative estimates with a stable
magnitude across the different specifications. This result is further confirmed graphically in
Figure A.2 and Figure A.4 in Appendix A, which also show evidence of parallel pre-trends
between subsidized and unsubsidized areas. Our preferred estimate of -181 USD per square
meter, in Column 3, is quite large, representing 18% of the average price per square meter
before the policy.

4.2 | Difference-in-Differences with homogeneous units

A second set of estimates consists of implementing frequently used techniques that maximize
the comparability between treated and control areas to minimize concerns about unobserved
confounders (Baum-Snow and Ferreira, 2015; Chen et al., 2022). For instance, in their
evaluation of the employment impacts of Enterprise Zones in the US, Neumark and Kolko
(2010) state that “the ideal control group consists of areas economically similar to enterprise
zones but lacking enterprise zone designation”. However, as suggested by our analysis
in Section 2, agents may resort more easily across similar areas, thus leading to larger
contamination effects and more biased estimates. In our context, those agents would leave
unsubsidized areas, depressing housing prices there, and causing the resulting DiD estimate
to be biased towards zero. All the estimates in this subsection are much lower than the ones
in the previous section. This is consistent with these techniques introducing some bias due
to contamination.

The first and most common technique to maximize comparability between treated and
control areas is to restrict the estimating sample to units located right across the border of
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the policy (Neumark and Kolko, 2010; Chen et al., 2022). Estimates in Columns 4 to 6 of
Table 2 follow this approach and compare the evolution of prices across subsidized and
unsubsidized areas within a 500-meter buffer around the border. Figure A.1 in the Appendix
provides a map of this buffer and Figure A.3 and Figure A.5 present the usual DiD graphs.
The pre-policy price levels across both sides of the border in Figure A.3 indicate that both
areas are indeed very similar. Our preferred point estimate, in Column 6, is -61 USD per
square meter with a standard error of 38. Thus, a researcher conducting the common border
DiD design in this context would not be able to discard that the tax break had a null effect
on the prices faced by consumers.

Dependent Variable:

USD per Square Meter

(1) (2) (3) (4) (5) (6)

Subsidized × Post-Policy −90∗∗ −112 −79 −84 −113∗ −121∗∗∗

(32) (75) (45) (45) (57) (36)

Housing Characteristics

Fixed Effect - Geography Neighborhood Neighborhood Neighborhood Neighborhood Neighborhood Neighborhood

Fixed Effect - Time Year × Month Year × Month Year × Month Year × Month Year × Month Year × Month

No. Obs 38,801 4,384 7,579 6,982 6,619 7,442

Data:

Subsidized Area All 0-500m 0-500m 0-500m 0-500m 0-500m

Unsubsidized Area All 0-500m 0-500m 500-1000m 1000-1500m 1500-2000m

Estimation Method DiD with PScore RD RD-DiD Ring-DiD Ring-DiD Ring-DiD

TA B L E 3 Difference-in-Differences Regressions - Extensions

Table 3 introduces additional techniques enhancing comparability between control and
treated areas. The first row features DiD with propensity-score reweighting (A. Smith and
E. Todd, 2005; Aker, 2010; Wang, 2013; Chen et al., 2022), the second implements a border
regression discontinuity (Holmes, 1998; Black, 1999; Bayer et al., 2007; Turner et al., 2014),
and the third one estimates a differences-in-discontinuities design (Grembi et al., 2016; Butts,
2023). Similarly to the border estimates discussed in the previous paragraph, all three point
estimates in columns 1 to 3 of Table 3 are much smaller in absolute value than the benchmark
obtained for the whole city. Again, this is consistent with larger contamination due to higher
resorting between more homogeneous units.

4.3 | Difference-in-Differences with heterogeneous units

We show in two ways that DiD estimates of the impact of the tax break grow in absolute
value as the heterogeneity between subsidized and unsubsidized areas increases. First, in
Equation 5 we explicitly introduce heterogeneity by interacting the DiD term in the border
specification with an index of price differences between both sides of the border. Figure A.6
in Appendix A illustrates how we compute this index. We start by defining a large number
of equidistant points along the main border of the policy. Then draw a 500-meter circle
around each of those points and compute the difference in the median price per-square
meter between the transactions that are contained in that circle but are in opposite sides of
the border (left panel of Figure A.6). As a result, each of the points along the border has a
scalar value characterizing the heterogeneity in prices across the border at that point. The
final step consists of attaching, to each housing transaction, a weighted average of those
scalars, for which the transaction property lies within the respective 500-meter circles. The
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respective weights are the inverse of the distance between the transaction property and the
applicable border points. We standardize the resulting heterogeneity index by subtracting
its average and dividing it by its standard deviation.

The second column of Table A.1 in Appendix A presents the estimate on the interaction
between the DiD term and the heterogeneity index. One standard deviation increase in
border heterogeneity increases the absolute value of the effect of the tax break by 55 USD
per square meter. This is a huge magnitude given our benchmark DiD estimate of 181
USD for the whole city and a pre-policy average price of 1,112 USD in the 500m buffer.
Figure A.7 in Appendix A plots the relationship between the DiD estimate and the border
heterogeneity index implied by that estimate. Note that the 95% confidence interval for the
DiD estimate in that figure includes the zero for values of the bottom half of the distribution
of the heterogeneity index.

The second way in which we evaluate the relationship between DiD estimates and the
heterogeneity between treatment and control consists in using the popular “ring approach”
(Di Tella and Schargrodsky, 2004; Kline and Moretti, 2014a; Butts, 2022; Myers and Lanahan,
2022). This consists of using controls units which are further away from the border. If
heterogeneity between treatment and control grows with distance from the border, sorting
and thus contamination should decrease and, according to our formula, the DiD estimate
should increase in absolute value. Columns 4, 5 and 6 in Table 3 present DiD estimates
for 500-1000, 1000-1500 and 1500-2000 meter rings, respectively. These estimates grow in
absolute value with the distance from the border, thus confirming the hypothesized pattern.

In certain contexts this ring approach can identify the true effect of the policy on treated
areas as long as spillovers are zero after a certain distance from the border (Clarke, 2017;
Butts, 2022; Myers and Lanahan, 2022). There is evidence that those distances can be quite
large in some contexts. Clarke (2017) finds that externalities reach at least 30km away
from the border of the policy and Myers and Lanahan (2022) establish the range with
no externality as beyond the 40th or 60th percentile of their distribution of technological
distance across firms and inventors. This requirement of no spillovers after a certain distance
may not hold in other contexts because of two difficulties, which are present in our study
and thus prevent us from recovering the true effect of the policy using the ring DiD estimates
in Table 3. First, natural (sea, mountains) or human-made (park, highway) constraints may
limit the distance after which one can define the control group. In our context, we study a
coastal city, and the sea restricts the distance of the rings we can built. For instance, only
10% of our unsubsidized transactions are beyond 2,100 meters. This restriction imposed by
the sea is clear in Figure A.8 in Appendix A. Second, as noted by Butts (2022), when policies
are large-enough to induce sorting of agents across the whole city, spillover-free areas may
well not exist.

The three sets of results in this section show that DiD estimates of the price effects
of a place-based policy increase with the heterogeneity between the subsidized and un-
subsidized areas chosen for comparison. This pattern is consistent with the framework
introduced in Section 2. There should be less resorting in reaction to lower prices when sub-
sidized and unsubsidized units are very heterogeneous, thus minimizing the contamination
effect. Importantly, the framework emphasizes that this is not a problem of heterogeneous
treatment effects but of biased estimates. We next complement these findings by solving for
a specific estimated model that allows us to separately measure the contamination effect.
Consistent with the reduced-form evidence in this section, we show that contamination
does indeed correlate positively with both the degree of heterogeneity across the border
and with diversion ratios. Recovering contamination for the whole city further allows us to
quantify the level of bias in the benchmark DiD estimate for this policy.
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5 | STRUCTURAL MODEL

In this section we introduce a specific model of real state transactions in a single city. The
model is static and housing is homogeneous in quality and has a different price depending
on the neighborhood where it is located. The demand-side of the model consists of a
discrete-choice framework with households choosing the neighborhood in which they want
to buy the generic unit of housing. The supply-side of the model consists of an upward
sloping, log-linear housing supply for each neighborhood.

5.1 | Demand

Households make a discrete and exclusive choice regarding the neighborhood in which they
are buying a house in Montevideo. This discrete set of geographical areas is complemented
by an outside option consisting in buying a house in the localities belonging to the broader
metro area of Montevideo. Potential buyers of a house compare the utility of their options
using Equation 6, and choose the option that yields the highest indirect utility.

Vijt = V(AMjt,Pjt, ϵ̃ijt) (6)

The first argument of the indirect utility function are the neighbourhood amenities
AMjt. Examples of such could be time-invariant such as distance to the coast or major
public infrastructure, or time-variant such as restaurants, shops, or public transportation
schedules. The second argument, Pjt, is the price per square meter of a generic housing unit
in neighbourhood j at time t. ϵ̃ijt denotes the unobserved preferences of consumer i at time
t for neighborhood j.

We parameterize the indirect utility function with the following linear function:

V(AMjt,Pjt, ϵijt) = Aj +Bt + ξjt −αPjt + ϵ̃ijt = δjt + ϵ̃ijt (7)

Amenities AMjt are the sum of a fixed component Aj, a city-wide time-varying compo-
nent Bt and a term ξjt that varies over time at the neighborhood level and is unobservable
to the econometrician. We define ϵ̃ = ζint + (1 − σ)× ϵijt, where σ with 0 < σ ⩽ 1 is the
nesting parameter. ζint is common to all products in nest n. We assume ζint+(1−σ)×ϵijt
follows an extreme value Type-1 distribution. Note that as σ approaches one, the within
nest correlation of utility levels goes to one, and that for σ = 0, the within nest correlation
goes to zero and we return to the standard logit model.

The mean utility of the outside option is normalized to zero in every period (i.e. δ0t =

0 ∀ t). As in (Berry, 1994), this structure yields a linear equation with which one can estimate
the whole demand system. This is Equation 8, where sj is the market share of area j in the
whole market at time t and s̄j,n,t is the market share of product j in nest n in period t.

ln(sj,t) − ln(s0,t) = δjt = Aj +Bt + ξjt −αPjt + σ ln(s̄j,n,t) (8)

5.2 | Supply

Perfectly competitive agents sell a total of Qjt generic housing units in neighborhood j at
time t. The perfect competition assumption implies that housing prices - net of taxes - equal
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marginal costs:

Pjt = (1 − τjt) ∗MC(Qjt). (9)

Marginal costs increase with the number of houses sold. This reflects that land is
fixed in each neighborhood and, as a result of this scarcity, it becomes more valuable with
consumers’ willingness to pay for living in the neighborhood. Marginal costs also have a
fixed component Ljt capturing neighborhood-specific aspects such as the total land available
for housing construction as well as shocks to construction costs.

Following previous literature, we parameterize the marginal cost function with the
following functional form (Saiz, 2010; Diamond, 2016; Baum-Snow and Han, 2023):

MC(Qjt) = Ljt ×Q
η
jt (10)

Applying logarithms to both sides of Equation 10, and combining the resulting expres-
sion with Equation 9 yields the inverse housing supply curve:

lnPjt = lnLjt + ln(1 − τjt) + η lnQjt (11)

5.3 | Parallel trends and contamination in this structural model

Roth and Sant’Anna (2023) have shown that functional forms are one of the main challenges
to parallel trends. Given that our structural model introduces a number of specific functional
forms, many of them non-linear, and we want to use this model to evaluate differences-in-
differences, we must check that it can satisfy parallel trends. We evaluate this by simulating
a series of equilibria of the model with alternative parameters. We present the detail of those
simulations in Appendix C and here summarize the two main conclusions we extract from
that exercise.

The first conclusion is that our model allows for parallel trends despite being highly
non-linear in both its supply and demand side. The second conclusion is that increasing the
variance of the simulated parameters corresponding to neighborhood amenities (ξjt) leads
to more violations of parallel trends but reduces the degree of contamination of the DiD
estimate. Intuitively, when neighborhoods experience large amenity shocks, this generates
large idiosyncratic changes in housing prices over time which reject any parallel trend test.
On the other hand, as suggested by the decomposition formula in Section 2 and the reduced-
form results in Section 4, those amenity shocks making neighborhoods very different imply
lower degrees of resorting in reaction to the treatment, which means less contamination and
bias of the DiD estimate.

6 | ESTIMATION

6.1 | Demand

We estimate our demand model on a dataset that has a single quantity and price for the each
combination of neighborhood and month-year. Quantities are the number of transactions in
each cell. In order to control for differences in housing quality across neighborhoods, prices
are the neighborhood × month-year fixed effects in a regression of transactions prices per
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square meter on those fixed effects plus a third-degree polynomial on the set of housing
characteristics described in Section 3. Those characteristics include properties’ age, area
in squared meters, distance to the coast, and four variables from the cadaster describing
construction quality.

The demand regressions estimate Equation 8. In these regressions, the Aj and Bt amenity
terms are captured by neighborhood and time fixed effects and the time-varying amenities
ξjt constitute the structural error. Since equilibrium prices and within-nest shares are
correlated with amenities, OLS estimates in Table 4 are likely biased. We address this
endogeneity by leverage the introduction of the LVIS policy as a supply shifter to build
a set of four instruments. The first one is identical to the DiD term and indicates if the
neighborhood is benefited by the subsidy at time t. The other three instruments capture
how the supply shifter differentially affects each nest. These are formed by interacting the
DiD term with the number of other neighborhoods in the same nest receiving the subsidy,
their area in squared meters, and the share of that area in the total area of the nest.

Since time-varying neighborhood amenities are the structural error of our IV regressions,
the identification assumption behind our set of instruments is that the tax break did not
impact those amenities conditional on our set of fixed effects. This assumption deserves
special attention given the abundant evidence on the impacts of new housing supply
on neighborhood amenities (Baum-Snow and Marion, 2009; Rossi-Hansberg et al., 2010;
Diamond et al., 2018), including evidence for the program we are studying (González-
Pampillón, 2022; Borraz et al., 2021). Two elements from our context justify this assumption.
First, as discussed in Section 3, we study a period in which the housing projects benefited
by the subsidy had not yet been completed. Second, although in principle housing prices in
our period could incorporate the future effect of new construction projects on improved
amenities, this anticipation is limited because previous evidence shows that the price
impacts of new housing projects are highly localized (González-Pampillón, 2022). It would
be thus very hard for market participants to anticipate where these projects were going to
be located and thus capitalize the resulting future amenities.

In order to improve the strength of the first stage of our instruments, we implement
a three-step IV approach following Bayer et al. (2007); Almagro et al. (2022). The first
step consists of obtaining regular IV estimates using the four instruments described above.
In a second step, we use these estimates to solve for the model’s equilibrium when all
time-varying parameters are set to zero. Finally, in the third step we re-estimate demand
using the four instruments used in the first step plus the equilibrium prices and nest share
sj|n obtained in the second step. Note that these last two instruments are obtained in an
equilibrium in which amenities are set to zero and thus, by construction, are not affected by
changes in neighborhoods’ attractiveness.

The first OLS estimate of the price coefficient in Column 1 in Table 4 is positive, which is
consistent with prices being positively correlated with neighborhoods amenities. In Column
2 we add a rich set of neighborhood and month-year fixed-effects. These seem to remove
part of the endogeneity, because the price estimate is still negative but much smaller, making
it statistically indistinguishable from zero. Column 3 presents the estimates corresponding
to the first of the three-steps described in the previous paragraphs. The final estimates,
which are the ones considered in the equilibrium counterfactuals in the next section, are
presented in Column 4. These include a negative and significant coefficient for the price
and a nested logit coefficient satisfying the restriction of being between 0 and 1.
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TA B L E 4 Demand Estimation

ln(sjt) − ln(s0t)

(1) (2) (3) (4)

Price per 100 Square Meters (α) 0.02*** -0.00 -0.02*** -0.07***

(0.00) (0.00) (0.01) (0.01)

Within-Nest Log Market Share (σ) 0.66*** 1.00*** 0.72*** 0.69***

(0.01) (0.01) (0.27) (0.04)

Observations 2,646 2,646 2,646 2,646

Method OLS OLS IV Simulated IV

Geography FE - Neighborhood Neighborhood Neighborhood

Time FE - Year x Month Year x Month Year x Month

K-P 1st stage F 0.71 21.6

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

6.2 | Supply

We calibrate the two parameters of Equation 11, one of them externally and the other
internally. We calibrate τjt externally using González-Pampillón (2022)’s estimate on the
LVIS subsidy representing 20% of the final housing price. We internally calibrate the inverse
housing supply elasticity η with a matching procedure that mirrors the one applied by
Berger et al. (2022) in their study of market power in the US labor market. We set η such that
the DiD term in the structural equilibrium exactly matches its reduced-form counterpart
of -181 from Section 4. In the next section we provide further details on the equilibrium
computation and, in particular, how we obtain a that structural DiD term.

7 | COUNTERFACTUALS

In this section we use the estimated model to solve for a set of counterfactual equilibria
and achieve three goals. First, we decompose a structural equivalent of our DiD estimate
into the three components presented in Section 2. This allows us to quantify the degree
of contamination in this DiD estimate, which is indicative of the degree of bias in the
benchmark reduced-form DiD estimate for the whole city. Second, we recover the incidence
of the subsidy in terms of lower housing prices of the subsidized areas according to the
model, and contrast it with the one obtained considering the benchmark reduced-form DiD
estimate. Third, we show that, as suggested by our decomposition formula in Section 2 and
by the variety of reduced-form estimates in Section 4, neighborhood-level contamination is
negatively correlated with the degree of heterogeneity between treatment and control units
and positively correlated with diversion ratios.

7.1 | DiD decomposition and subsidy’s incidence

We solve for the equilibrium of the model at the monthly level, thus mirroring the structure
of our data. This procedure takes as inputs the IV estimated demand parameters and the
calibrated supply parameters, presented in the previous section. It also uses as inputs the
neighborhoods’ amenities and marginal costs, which we obtain as the residuals from the
housing demand and supply equations, respectively. We focus our equilibrium comparisons
in the period after the subsidy was introduced and evaluate the counterfactual equilibrium
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prices and quantities when the subsidy is set to zero. Analogously to the reduced-form DiD,
the structural DiD is double difference between prices in the subsidized and unsubsidized
areas with and without the subsidy.

Table 5 presents the decomposition and incidence results for the whole city. The second
column has the results using the structural model and the first one has the reduced-form
counterparts, when available. We have an equilibrium for each of the 32 months of the
“post” period, so we report average results for all periods. Also, structural results for the
whole city correspond to the average of all neighborhoods. The two DiD terms of the first
row are identical by construction, since we use this moment to calibrate the inverse housing
supply elasticity parameter.

The five rows in the center of Table 5 present the decomposition of the DiD term following
Equation 2. The ATT term is the difference in average equilibrium prices of the subsidized
neighborhoods with and without the subsidy. Following our decomposition formula, the
ATT is, in turn, the sum of the autarky and resorting terms. The autarky term is the change
in the average equilibrium prices across subsidized areas due to the introduction of the
subsidy but without allowing for resorting between neighborhoods. We then calculate the
resorting term as the difference between the ATT and the autarky. This resorting effect in
Table 5 is large, indicating that the reduction in housing prices in the subsidized areas would
have been much higher if buyers had not reacted to the policy by resorting into these areas.

The contamination term is the most important one since it measures the difference be-
tween the DiD term and the ATT. This term can be thought of as the structural counterpart
of the bias that the reduced-form estimate has as a measure of the impact of the policy. We
obtain the contamination term as the difference in the average equilibrium prices of unsub-
sidized areas with and without the subsidy. The existence of a contamination of around a
quarter of the ATT in Table 5 indicates that the DiD term substantially underestimates the
impact of the policy on the prices of the targeted areas.

TA B L E 5 Decomposition of DiD Results Using Structural Model

Reduced-Form Structural

DiD −181 −181

Did Decomposition:

ATT −242

Autarky −404

Sorting 162

Contamination −61

Contamination/ATT 25.2%

Incidence 55.5% 79.1%

The last row of Table 5 shows that the existence of substantial contamination has large
implications in terms of the conclusions on the incidence of the policy one would get
following either the reduced-form DiD (first column) or the structural ATT (second column).
We calculate the incidence as the estimated effect on prices as a proportion of the subsidy.
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While the true incidence is 79%, the one calculated using the reduced-form DiD would have
been 24 percentage points lower. To obtain the amount of the subsidy for the structural
incidence we apply the 20% rate over the price of the subsidized area that one would obtain
by evaluating the equilibrium quantities on the unsubsidized inverse supply curve. For the
reduced-form incidence we compute without the estimated model, thus mirroring what we
would do as applied researchers without this model. In order to obtain an “unsubsidized
equilibrium price for subsidized areas”, to which we can apply the 20% rate, we add the
observed average difference between the pre and post period in the prices of unsubsidized
areas to the average price of the subsidized areas in the pre period.

We illustrate the relevance of our incidence result by looking at the price faced by
an average consumer buying a housing unit in this city. The average price of houses in
subsidized areas in the pre-period was 90,000 USD. If the subsidy have had an incidence
of a 100%, and then all subsidy was translated to consumers, they would have saved
18,000 dollars. However, tax breaks typically are not entirely reflected on prices, and it is
thus an important economic question to establish which share of the tax break reaches its
potential beneficiaries. In our context, a researcher guided by the reduced form estimate of
the incidence (55.5%) would have concluded that our consumer saved around 9,990 USD.
However, once accounted for contamination, the incidence of 79.1% implies a saving of
14,238 USD. The difference between both estimates of the incidence is 2,934 dollars, which
amounts to 29.8% of Uruguay’s GDP per capita in the year the policy was introduced.

7.2 | Determinants of Contamination and Bias

The previous analysis showed that contamination can lead to wrong conclusions on the
effect of a placed-based policy. In order to guide applied work in other contexts, it is useful
to understand when contamination may matter more and thus lead to wrong conclusions.
We next show that the joint consideration of our decomposition formula, reduced-form
estimates and structural decomposition results consistently indicates that contamination
increases with the intensity of demand-side sorting, which in turn correlates with the
similarity between control and treatment areas. In terms of guidance for applied work, this
implies that, conditional on having parallel pre-trends, applied researchers should prefer
comparisons between less homogeneous areas when placed-based policies may induce
substantive resorting of agents between treatment and control areas.

Figure 4 presents the first piece of evidence on the positive correlation between contami-
nation and demand-side sorting. It does so by plotting structural contamination as a share
of ATT and the heterogeneity index introduced in Section 4 for every pair of subsidized
and non-subsidized neighborhoods lying along the border of the policy. Going back to the
reduced-form relationship between the border DiD estimate and the degree of heterogeneity
across the border in Table 3 and Figure A.7, the results in Figure 4 indicate that contamina-
tion can explain why one may not discard that the policy had zero effects when comparing
very homogeneous areas.

The second piece of evidence, presented in Figure 5, focuses on the whole city, and shows
how contamination is strongly and positively correlated with diversion ratios. Consistent
with our simple decomposition formula, the correlation does not only have the expected
sign but it is also linear. Since we are looking at all neighborhoods and months, we have
enough numbers of pairs to estimate the regression equivalent of Figure 5 including a rich
set of controls. Table A.2 in Appendix A shows robust and positive regression coefficients
when controlling for none, either and both neighborhood and month × year fixed-effects.

Finally, our formula states that not only contamination but also ATT is correlated with the
intensity of demand-side substitution. Since the resorting term is part of the ATT together
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with autarky term, more of it would lead to lower DiD estimates of the impact of the subsidy.
Similarly to Figure 4 above, Figure A.10 in Appendix A shows that the absolute value of
the ATT effectively increases with the heterogeneity between neighborhoods across the
border. Although this relationship is not relevant as a source of bias, it may still matter
for applied work for two reasons. First, if ATT effects are heterogeneous due to resorting,
applied researchers focusing on very homogeneous areas would get systematically lower
estimates. Second, and more substantive, the identification of substantive resorting affecting
the ATT can be normatively relevant, since the higher prices caused by resorting may offset
part of the benefits of the subsidy for incumbent households.

8 | CONCLUSION

The non-random assignment of place-based policies implies that their study requires the use
of quasi-experimental methods, with difference-in-differences (DiD) being one of the most
important. In this paper, we provide a framework to analyze when difference-in-differences
estimates may or may not recover the effect of the policy. In contexts where place-based
policies are large enough to affect non-targeted areas, reduced-form methods may not
recover the actual effect of the policy because of SUTVA violations. We provide a structural
framework to recover - in those contexts - the effects on quantities, prices, and welfare.

We illustrate the potential of our framework by analyzing a large tax break for housing
development in lagging areas in Montevideo. We show that reduced-form difference-in-
differences vary greatly depending on the spatial range of included treatment and control
units. This variation, in turn, follows the pattern predicted by our framework: When the
control and treated groups are more similar, the effect of the tax break on prices is lower.
According to our framework, these heterogeneous results are not necessarily capturing an
underlying heterogeneity in the effects of the policy but partly reflect a heterogeneity in
the degree of demand spillovers and reference-group contamination across the different
estimates.

We then present a new formula that shows that when a placed-based policy triggers
relocation from “non-treated” into “treated” areas, the difference-in-differences estimator
can be decomposed into three different effects, without being able to separately identify
any of them. We then develop and estimate a structural demand and supply model of the
market to disentangle these three effects.

In equilibrium counterfactuals we show that the reduced-form difference-in-differences
estimates for the whole city substantially underestimate the benefit that consumers obtain
from the tax break. The SUTVA violation accounts for about 25% of the total effect of
the policy in the subsidized area when considering the whole city. We illustrate how this
SUTVA violations can have serious consequences in terms of the welfare impacts of large
place-based policies.
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A | APPENDIX: FIGURES AND TABLES
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Dependent Variable:

USD per Square Meter

(1) (2)

Post × Treated −61 −63

(38) (34)

Post × Treated × Z-Score - −55∗∗∗

(14)

Housing Characteristics

Fixed Effect - Geography Neighborhood Neighborhood

Fixed Effect - Time Year × Month Year × Month

No. Obs 7,579 7,578

Data 500m Buffer 500m Buffer

* . . .p < 0.05 ** . . .p < 0.01 *** . . .p < 0.001

Note: Standard errors are clustered at the neighborhood level.

Note: Polynomial of degree three used to control for housing characteristics.

TA B L E A . 1 DiD Regressions - USD per Square Meter with Heterogeneity
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F I G U R E A . 9 Time Series Plot and Pre-Trends in Structural Model

TA B L E A . 2 Contamination and Diversion Ratio

Contamination

(1) (2) (3) (4)

Diversion Ratio 2.57*** 2.77*** 2.51*** 2.70***

(0.07) (0.08) (0.06) (0.07)

Observations 18,240 18,240 18,240 18,240

Neighborhood FE No Yes No Yes

Month_Year FE No No Yes Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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B | APPENDIX: DERIVING THE DID DECOMPOSITION

We specify demand for housing in a particular district d at given prices p by Dd(p). Supply
is specified by Sd(qd). Please note that this illustration makes use of a linear approximation
in both cases.

B.1 | One Subsidized Area

The shift in equilibrium housing quantity in district B in response to the initial policy-
induced price change in district A is approximated in the following way:

qB
3 − qB

2 =
∂DB

∂pA
× (pA2 − pA1 )

A similar statement can be made about the equilibrium housing quantity in district A.

qA
3 − qA

2 =
∂DA

∂pA
× (pA2 − pA1 )

Relying on the assumption of full competition within each district, changes in equilib-
rium housing prices in both districts can be approximated.

pA3 − pA2 =
∂SA

∂qA
× (qA

3 − qA
2 )

pB3 − pB2 =
∂SB

∂qB
× (qB

3 − qB
2 )

Inserting the two earlier equations into the latter equations, we can express second-round
equilibrium price changes as a function of demand and supply partial derivatives, as well
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as the initial policy-induced price change in district A.

pA3 − pA2 =
∂SA

∂qA
× ∂DA

∂pA
× (pA2 − pA1 )

pB3 − pB2 =
∂SB

∂qB
× ∂DB

∂pA
× (pA2 − pA1 )

Inserting these two expressions into the generalised version of the DiD estimator given
in Equation 2, we arrive at Equation 3.

β̂DiD = (pA2 − pA1 ) + (pA3 − pA2 ) − (pB3 − pB2 )

≈ (pA2 − pA1 ) +
∂SA

∂qA
× ∂DA

∂pA
× (pA2 − pA1 ) −

∂SB

∂qB
× ∂DB

∂pA
× (pA2 − pA1 )

= (pA2 − pA1 )×
[
1 +

∂SA

∂qA
× ∂DA

∂pA
−

∂SB

∂qB
× ∂DB

∂pA

]
= (pA2 − pA1 )×

[
1 +

∂DA

∂pA
×
(∂SA
∂qA

−
∂SB

∂qB
×DRA,B

)]
with DRA,B being the diversion ratio between housing in district A and housing in

district B.

B.2 | Two Subsidized Areas

Using again the notation from Subsection B.1, we now add a second subsidized district C.

dDB =
∂DB

∂pA
(pA2 − pA1 ) +

∂DB

∂pC
(pC2 − pC1 )

dDA =
∂DA

∂pB
dPB +

∂DA

∂pC
(pC2 − pC1 )

dDC =
∂DC

∂pA
(pA2 − pA1 ) +

∂DC

∂pB
dPB

Using the supply equation, we can derive an expression for dPB:

dPB =
∂SB

∂qB
dDB

=
∂SB

∂qB
×
[∂DB

∂pA
(pA2 − pA1 ) +

∂DB

∂pC
(pC2 − pC1 )

]
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Using the same approach for the price change in district A, we get the following:

dPA =
∂SA

∂qA
dDA

=
∂SA

∂qA
×
[
∂DA

∂pB
dPB +

∂DA

∂pC
(pC2 − pC1 )

]
=
∂SA

∂qA
×
[
∂DA

∂pB
×
(
∂SB

∂qB
× ∂DB

∂pA
× (pA2 − pA1 ) +

∂SB

∂qB
× ∂DB

∂pC
× (pC2 − pC1 )

)
+

∂DA

∂pC
(pC2 − pC1 )

]

We can now re-write the DiD estimator:

β̂DiD =(pA3 − pA1 ) − (pB3 − pB1 )

=(pA3 − pA2 ) + (pA2 − pA1 ) − (pB3 − pB2 )

≈(pA2 − pA1 )+

∂SA

∂qA
×
[
∂DA

∂pB
×
(
∂SB

∂qB
× ∂DB

∂pA
× (pA2 − pA1 ) +

∂SB

∂qB
× ∂DB

∂pC
× (pC2 − pC1 )

)
+

∂DA

∂pC
(pC2 − pC1 )

]
+

∂SB

∂qB
×
[∂DB

∂pA
(pA2 − pA1 ) +

∂DB

∂pC
(pC2 − pC1 )

]

Please note:

1. The first term is the autarky effect.
2. The second term is the spillovers effects. In this case, the spillovers effect in equilibrium

can be negative or positive. They are going to depend on the two exogenous changes.
Spillovers can attenuate the autarky effect if the net effect is to bring people to A, or
increase it if the net effect is to send people to C (A gains from B, but loses to C).

3. The third term is the contamination effect, and is similar to before but now it is increased
compared to the previous example when only one region receives the subsidy (the
reason is that B now changes because people are leaving to A but also because people
are leaving to C)

C | APPENDIX: PARALLEL TRENDS WITHIN THE STRUCTURAL MODEL

C.0.1 | Parallel Trends vs. Contamination

Because we plan to use our model to decompose an structural version of our DiD estimate, it
is important to first check that parallel trends are satisfied in our model. Roth and Sant’Anna
(2023) has shown that functional form are one of the main challenges of parallel trends and
our exercise certainly introduces a number of specific functional forms. We check under
which conditions our model satisfies parallel trends by simulating a simplified version
of the model presented above in which the supply-side is identical and the demand-side
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abstracts from the nested-logit component and thus features a simple logit demand system.
The endogenous variables of the model are Pjt and Qjt, which are determined in

equilibrium. For each value of the parameters discussed below, we perform 200 simulations,
which are independent of each other. Each simulation features 10 products, out of which
five are in the treatment group, and 20 time periods, distributed equally before and after the
policy.

Variable Parameters

Base Heterogeneity γj ∼ N(0,σj) Lj ∼ N(0,σj)

Time Heterogeneity γt ∼ N(0,σt) Lt ∼ N(0,σt)

Idiosyncratic Heterogeneity ξjt ∼ N(0,σjt) ˜ϵjt ∼ N(0,σjt)

Inverse Supply Elasticity η = 0.3

Subsidies τjt = 0.2 if area j is subsidised in period t, else τjt = 0.

TA B L E A . 3 Simulation Setup - Random Variable Distributions

To understand the properties in terms of parallel trends and contamination, we simplify
the setting focusing on three different types of shocks: a) the time invariant shocks that
represent the “base heterogeneity” across locations (terms depending on j), b) the “time
heterogeneity”, which are time shocks that affect all locations at the same time (terms
depending on t), c) the “idiosyncratic heterogeneity” shocks that vary by time and locations
(terms depending on jt). The distributions from which the exogenous variables are drawn
and the other parameters of the simulation are presented in Table A.3.

The exercise allows us to extract three main takeaways. First, our model allows for
parallel trends. We simulate the model for a specific set of parameters (σj = 0.5,σt =

0.75,σjt = 0.25) to show that, despite being very non-linear in both the demand and the
supply side, our model can produce parallel trends between treated and untreated areas.
The top graph in Figure A.11 suggests the presence of parallel trends in a typical DiD graph
while the bottom graph in Figure A.11 presents the typical event study test for parallel
trends in the literature.

The second takeaway is to characterize under which type and size of heterogeneity our
model rejects the parallel trends. To analyze this issue we perform simulations over several
values of the heterogeneity parameters. In these simulations, the variance for j terms (σj) is
limited to the set {0.5, 1, 2}, while the other two variances (σt and σjt) can vary along a grid
from 0 to 4 (in 0.25 increments).

The top graph of Figure A.12 presents the results. For each level of σj it represents the
number of significant coefficients of a variable that indicates the time period interacted with
the treatment status (as in the bottom graph in Figure A.11). We find that the violation of
parallel trends is more related to higher levels of unobserved heterogeneity (σjt) than higher
levels of time variance (σt). Additionally, when the level of baseline heterogeneity (σj) is
large, then larger time heterogeneity σt also compromises the parallel trends.
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F I G U R E A . 1 1 Simulations for an specific draw of parameters (σj = 0.5,σt = 0.75,σjt =
0.25)

Finally, the third takeaway is that there is a trade-off between parallel trends violations
and the contamination effect. The bottom graph of Figure A.12 presents the size of the
contamination effect under these simulations. We graph the relative size of the equilibrium
price effect on the unsubsidized areas compared to the price on these areas. Contamination
is larger when the size of the base heterogeneity (σj) is relatively larger compared to the
unexplained heterogeneity (σjt). Intuitively, the more similar the different locations, the
higher the extent of reallocation from the control unit to the subsidized units. The opposite
is true for the violations of parallel trends. The violation of parallel trends is created because
different locations receive different shocks over time, so the mean utility they offer evolves
differently over time and so does then the prices.
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