INTEGRAÇÃO DAS FONTES RENOVÁVEIS INTERMITENTES NA AMÉRICA LATINA: BRASIL, CHILE E URUGUAI

Autor: Mauricio T. Tolmasquim
Integração das Fontes Renováveis Intermitentes na América Latina: Brasil, Chile e Uruguai (2017)

Documento elaborado bajo la coordinación de la Dirección de Análisis y Estrategia de Energía, Vicepresidencia de Infraestructura, CAF.

Mauricio Garrón, Director, Dirección de Análisis y Estrategias de Energía

Albert Ribeiro, Ejecutivo, Dirección de Análisis y Estrategias de Energía

Edición: Dirección Corporativa de Comunicación Estratégica
ÍNDICE

1 Introdução .. 6

2 Desafios para a Integração das Fontes Renováveis no Setor Elétrico: Aspectos Conceituais ... 8
 2.1 Variabilidade ... 8
 2.2 Incerteza .. 10
 2.3 Dependência Locacional ... 11
 2.4 Necessidade de geração flexível complementar .. 11
 2.5 Contribuição Decrescente para Adequabilidade do Sistema Elétrico 12
 2.6 Risco de Necessidade de Corte da Geração ... 15

3 Desafios para Penetração das Fontes Renováveis na América Latina: Brasil, Chile e Uruguai .. 15
 3.1 Brasil ... 15
 3.1.1 Características do Setor Energético Brasileiro .. 15
 3.1.2 Características do Setor Elétrico Brasileiro .. 16
 3.1.3 Perspectivas de Crescimento da ERNC no Brasil .. 19
 3.1.4 Desafios para integração das fontes intermitentes ao Sistema Elétrico Brasileiro 20
 3.2 Chile .. 23
 3.2.1 Características do Setor Energético Chileno ... 23
 3.2.2 Característica do Sistema Elétrico Chileno .. 23
 3.2.3 Perspectiva de Crescimento das ERNCs no Chile .. 24
 3.2.4 Desafios para a integração das fontes intermitentes ao Sistema Elétrico Chileno 27
 3.3 Uruguai .. 30
 3.3.1 Características do Setor Energético Uruguaio .. 30
 3.3.2 Características do Setor Elétrico Uruguaio .. 30
 3.3.3 Perspectivas de Crescimento da ERNC no Uruguai 33
 3.3.4 Desafios para integração das fontes intermitentes ao Sistema Elétrico Uruguaio 34

4 Comentários Finais .. 37

5 Referências Bibliográficas .. 39
ÍNDICE de FIGURAS:

Figura 1: Estimativas do "capacity factor" das usinas fotovoltaicas com o aumento da sua penetração (linha pontilhada é o "capacity credit" médio e a linha contínua é o "capacity credit" incremental) .. 13

Figura 2: Relação entre a Capacidade Instalada das Usinas Eólicas e o “Capacity Credit” na Alemanha. .. 14

Figura 3: Capacidade Instalada por Fonte Energética no Brasil, 2015 .. 17

Figura 4: Geração de Eletricidade por Fonte Energética no Brasil, 2015 .. 17

Figura 5: Sistema de Transmissão Brasileiro - 2015 ... 18

Figura 6: Crescimento do Mercado de Energia do SIN x Energia Armazenável Máxima .. 21

Figura 7: Mercado Líquido de Energia no SIN para Fontes de Energia Controláveis .. 22

Figura 8: Capacidade Instalada por Fonte Energética no Chile, 2015 .. 24

Figura 9: Geração de Eletricidade por Fonte Energética no Chile, 2015 ... 24

Figura 10: Geração de Eletricidade desde a Lei das ERNC - GWh ... 26

Figura 11: Potencial de Fontes Renováveis de Energia no Chile .. 28

Figura 12: Capacidade Instalada por Fonte Energética no Uruguai, 2015 .. 33

Figura 13: Geração de Eletricidade Por Fonte Energética no Chile, 2015 ... 33

Figura 14: Capacidade Instalada de Geração de Energia Eólica no Uruguai (MW) .. 34

Figura 15: Capacidade Instalada de Geração de Energia Solar no Uruguai (MW) .. 34

Figura 16: Comportamento Médio Diários da Demanda e das Fontes Eólica e Solar ... 35
1 Introdução

Em vários países, a política energética é crescentemente conduzida para incrementar a participação de fontes renováveis de energia na geração de eletricidade, em função da necessidade de aumentar a segurança do abastecimento, atender a demanda crescente de energia nos países em desenvolvimento e combater as mudanças climáticas.

De fato, dado que a oferta de combustíveis fósseis é desigualmente distribuída e exaurível, muitos países focaram parte de sua estratégia de longo prazo de segurança de abastecimento energético na redução gradativa da dependência destes combustíveis. Estratégia esta, que também traz benefícios no curto prazo, dado que as fontes renováveis servem, igualmente, como hedge contra a volatilidade do preço dos combustíveis fósseis.

Da mesma forma, a conjugação de políticas de expansão da geração da oferta de energia, de forma a atender à forte expansão da demanda de eletricidade em países em desenvolvimento; com políticas de incentivo às fontes renováveis de energia, é um vetor relevante de expansão dessas fontes energéticas.

Igualmente determinante para a expansão das fontes renováveis de energia é o compromisso de combater as mudanças climáticas globais. Em dezembro de 2015, em Paris, na 21ª Conferência das Partes (COP 21) relativa à Convenção-Quadro das Nações Unidas sobre Mudança do Clima (UNFCCC), 195 países concordaram em limitar o aquecimento global abaixo de 2°C. Cerca de 147 países mencionaram o desenvolvimento das energias renováveis em seus compromissos para a redução da emissão de gases de efeito estufa1.

Algumas fontes renováveis de energia são despacháveis e podem ser chamadas a operar a qualquer momento; ou seja, o operador do sistema elétrico pode confiar na sua geração. Podemos incluir nesta categoria as usinas geotérmicas, as hidrelétricas com reservatório, as usinas que usam biomassa, e algumas plantas solares térmicas. Outras fontes renováveis são variáveis e menos previsíveis, como por exemplo; as usinas eólicas, as plantas fotovoltaicas, as hidrelétricas sem reservatório e as usinas que geram eletricidade a partir das ondas e das marés. Dentre as fontes renováveis, as fontes eólica e solar têm se destacado com altas taxas de penetração no mercado. Todavia, as restrições derivadas da variabilidade e imprevisibilidade

1O quinto relatório do International Panel on Climate Change (IPCC 2014) confirma que a influência humana nas mudanças climáticas é inequívoca, e que as mudanças recentes no clima têm impactado o sistema natural e humano. Aponta que a contínua emissão de gases do efeito estufa vai causar um aumento ainda maior da temperatura e alterações permanentes em todos os componentes do sistema climático; aumentando a probabilidade de impactos severos, generalizados e irreversíveis para as pessoas e o ecossistema. Indica ainda que as mudanças climáticas requerem uma redução substancial da emissão de gases de efeito estufa.
(intermitência) do vento e do sol criam o desafio de se equilibrar oferta e consumo, de forma instantânea.

Esta é uma questão central na América Latina, já que a tendência recente na região é de crescimento rápido das energias renováveis não-convencionais (ERNC). A participação das energias renováveis na matriz energética latino-americana é uma das maiores do mundo devido à hidroeletricidade e ao papel da bioenergia nos transportes, residências e indústrias. Graças a hidroeletricidade, cerca de 55% da geração de eletricidade na América Latina é de fontes renováveis, muito mais que a média mundial de 21% (IEA, 2015b). Contudo, apesar disto, no que diz respeito ao setor elétrico, cada vez mais os países da América Latina têm implementado políticas visando desenvolver as ERNCs.

Entre 2006 e 2015, a capacidade instalada das ERNCs mais que triplicou, passando de 10 GW para 36 GW. A geração elétrica a partir da biomassa e da geração eólica foram as duas fontes cuja capacidade instalada mais cresceu desde 2000. A principal biomassa utilizada foi o bagaço da cana, principalmente no Brasil; e com uma presença menor na Guatemala, México e Argentina. A capacidade eólica também cresceu de maneira acelerada na região. O Brasil, México, Uruguai e Panamá lideraram esta expansão; instalando em 2015, respectivamente, 2.700 MW, 700MW, 300 MW e 230 MW (IRENA, 2016a). A capacidade instalada fotovoltaica (PV) na região é ainda pequena, mas tem crescido de forma significativa nos anos recentes; sobretudo no Chile, México, Peru e Uruguai.

Três países da América Latina constavam na lista dos 10 países que mais investiram em energias renováveis (“Top 10”) em 2015: Brasil, México e Chile (Frankfurt School-UNEP Centre/BNEF, 2016). Ao mesmo tempo, o Uruguai passou a receber a atenção mundial pelo rápido crescimento da participação das ERNCs na geração de energia elétrica. Focaremos, neste estudo, no Brasil e no Chile (dois países que constam na lista dos “Top 10”), além do Uruguai (país que se destaca pela alta participação das ERNCs na sua matriz elétrica).

O Brasil tem a maior economia da América Latina e uma capacidade instalada de 141.000 MW, aproximadamente o dobro da segunda maior economia da região, o México. A geração de eletricidade no Brasil é dominada pela hidroeletricidade, a qual correspondeu a 64% do total gerado em 2015, um ano seco. Em anos com boa hidrologia, esta participação pode chegar a 85%. Em 2014 e 2015, o país foi o quarto país do mundo que mais expandiu a capacidade instalada eólica. Em 2015, cerca de 9% da geração de eletricidade do país era com ERNCs, principalmente biomassa e eólica. Em 2016, o Brasil ratificou o seu compromisso de até 2025
reduzir 37% a emissão de gases de efeito estufa relativamente a 2005; e até 2030, reduzir 43% destas emissões. Para atingir este objetivo, o país pretende, até 2025, aumentar para 23% a participação das ERNCs na geração de energia elétrica.

O Chile tem experimentado, igualmente, um rápido crescimento da geração renovável. Com recursos fósseis domésticos limitados, o Chile enfrenta um dos maiores preços de energia da América Latina. Isto, combinado com uma condição geográfica favorável para a geração de energia solar e eólica, faz com que as fontes renováveis sejam competitivas com a geração a partir de combustíveis fósseis (OECD/ECLAT, 2016). A proporção de energia solar e eólica está crescendo rapidamente. O Chile está no caminho de atender, antes de 2025, a sua meta de gerar 20% da sua eletricidade com fontes renováveis não-convencionais de energia. Além disto, o Chile tem uma das mais ambiciosas metas de longo prazo: gerar 60% de sua eletricidade com renováveis até 2035 e 70% até 2050.

O Uruguai, em menos de uma década, promoveu uma mudança radical no setor energético. As ERNCs, juntamente com a hidroeletricidade, representaram 93% da geração de eletricidade do Uruguai em 2015. A participação das renováveis na geração de eletricidade é quatro vezes maior do que a média mundial. Em 2015, a geração eólica já representava 15% da geração total de eletricidade do país; mas o Uruguai aspira a mais do que dobrar essa participação até 2017. Este crescimento colocará o país na fronteira tecnológica em termos de gerenciamento de um sistema elétrico com alta participação de fontes intermitentes.

Partindo de uma análise conceitual e do estudo de caso desses três países latino-americanos, este relatório descreve para os tomadores de decisão os principais desafios para a integração das fontes eólica e solar no sistema elétrico latino-americano.

2 Desafios para a Integração das Fontes Renováveis no Setor Elétrico: Aspectos Conceituais

2.1 Variabilidade

A geração das usinas de energia renováveis intermitentes flutua de acordo com a disponibilidade de recursos. A geração eólica varia ao longo do tempo devido às flutuações da velocidade do vento. Ela pode variar de 0% a 100% ao longo do dia. Esta flutuação é suavizada quando se considera uma ampla área geográfica ao invés da geração de uma única usina. De fato, a geração de várias usinas em diferentes regiões varia menos que a de uma usina isolada (Perez-Arriaga, 2011).
A geração fotovoltaica, por sua vez, varia em função da posição do sol ao longo do dia, da estação do ano, e da ocorrência ou não de nuvens. Contudo, a geração destas plantas flutua de uma maneira mais regular que a energia eólica. A sua produção não cai para zero em dias nublados, pois ela opera tanto com a luz solar difusa quanto com a direta. Além disto, as usinas fotovoltaicas não geram à noite, de forma que as demais plantas podem se preparar para gerar neste período. A diversidade espacial e a agregação de um conjunto de usinas fotovoltaicas, da mesma forma que os parques eólicos, podem mitigar algumas destas flutuações.

A variabilidade não é algo novo na operação dos sistemas elétricos: a demanda flutua para cima e para baixo e o operador do sistema elétrico sempre teve que lidar com isto, já que a geração e o consumo de eletricidade devem estar equilibrados instantaneamente, a qualquer momento. A operação do sistema elétrico para garantir este equilíbrio leva em consideração, sempre que possível, as limitações dos equipamentos; incluindo falhas, assim como flutuações normais da oferta e da demanda. Numa escala de tempo de segundos a minutos, o operador do sistema deve lidar com flutuações na frequência e na voltagem do sistema elétrico, decorrentes de flutuações na carga; que caso não sejam controladas, podem danificar o sistema assim como os equipamentos ligados a ele.

Apesar do planejamento da demanda ser bastante acurado, sempre há uma flutuação residual imprevisível da demanda em tempo real, sendo que nos lugares em que a demanda é particularmente sensível às condições climáticas, a incerteza sobre a carga pode ser considerável. Da mesma forma, a oferta também eventualmente varia, já que falhas imprevisíveis podem impedir que as usinas convencionais despacháveis operem conforme planejado. Portanto, a geração eólica e a solar não introduzem um problema novo para o setor. Contudo, altas participações destas fontes na matriz elétrica amplificam enormemente o desafio do operador do sistema (IEC, 2012).

Estas flutuações das fontes renováveis variáveis fazem com que a geração de outras fontes e a carga tenham de ser modificadas mais rapidamente e/ou mais frequentemente do que o que já é requerido de forma a manter o equilíbrio entre oferta e demanda.

A variabilidade da geração das energias renováveis intermitentes não deve ser vista separadamente da variabilidade da carga. Os aumentos ou decréscimos na carga líquida, assim como a taxa e a frequência em que elas ocorrem, é o grande desafio para o equilíbrio do sistema. Ou seja, o sistema precisa responder rápido o suficiente para acomodar estas rápidas e relevantes mudanças. Este problema decorre não apenas do forte crescimento ou redução da produção das fontes renováveis em algumas poucas horas; mas como dito acima, também de um eventual desencontro da geração com as flutuações da demanda (IEA, 2011).
2.2 Incerteza

A incerteza está relacionada com o grau de previsibilidade da geração de eletricidade. Não é possível de se prever completamente a velocidade do vento e a irradiação solar. Portanto, o nível de geração que uma usina eólica ou solar fotovoltaica pode produzir, em um momento determinado de tempo, não pode ser determinado com certeza. De maneira geral, a geração solar é mais previsível que a geração eólica; visto que os fatores que afetam a geração solar, como as nuvens e o pôr do sol, são mais previsíveis do que a disponibilidade de vento.

Da mesma forma que no caso da variabilidade, a incerteza não é fator novo para o operador do sistema. A previsão de demanda para o dia seguinte geralmente inclui uma estimativa de erro; que pode ser maior quando o consumidor responde a estímulos inesperados, como uma frente fria. Contudo, a variação da demanda é consideravelmente mais regular e previsível que a geração das fontes renováveis intermitentes.

Todos os sistemas elétricos mantêm reservas disponíveis para prover eletricidade em caso de um evento inesperado, como falhas na transmissão ou na planta geradora e erros de previsão da demanda. Uma maior introdução de fontes intermitentes de energia tende a levar a um aumento dos requisitos de reserva, devido ao risco de erros de previsão da oferta. O custo relacionado ao aumento da reserva é em última instancia arcado pelo consumidor.

O operador do sistema gerencia grande parte da energia do grid por meio do comprometimento antecipado das unidades que gerarão a energia necessária para atender a carga. Atualmente, o comprometimento das unidades geradoras é amplamente determinístico, significando que o operador, ao programar um gerador para operar, espera que ele esteja completamente disponível. A prática reflete o fato das tradicionais usinas termelétricas e hidrelétricas serem relativamente previsíveis e controláveis. Mas, o processo de cálculo da reserva necessária para garantir a confiabilidade do sistema se torna mais complexa quando lida com uma geração incerta (IEC, 2012).

Medidas que reduzam a incerteza podem afetar o tipo e a quantidade de reserva requerida de forma a manter a confiabilidade do sistema. Estas medidas têm dois principais objetivos: primeiro, ter a previsão de dados disponível; segundo, efetivamente usar as informações de forma a influenciar as decisões operacionais, o que demanda métodos mais avançados de forma a subsidiar a operação e o despacho das usinas. Ao contrário dos processos determinísticos de despacho das usinas, os métodos avançados devem tomar em consideração a natureza estocástica da geração eólica e fotovoltaica. O desafio é não expor o sistema a riscos desnecessários, nem “sobre-estimar” a necessidade de reserva, o que implicaria em mais custo e poluição.
2.3 Dependência Locacional

Recursos intermitentes de geração de energia renovável (disponibilidade de vento e irradiiação solar) não são igualmente distribuídos geograficamente. A qualidade do recurso solar, por exemplo, é em grande parte função da latitude. Desta forma, potenciais locais de geração com elevada quantidade de recursos intermitentes de energia renovável podem não coincidir com as áreas com maior demanda de eletricidade. Este é o caso das fontes solar e eólica que estão frequentemente localizadas em regiões remotas, longe dos centros de carga e muitas vezes distantes da rede existente. Além disto, as fontes renováveis intermitentes são intensivas no uso de terra; de tal forma que quanto mais perto do centro de carga maior o custo da terra.

Há, portanto, um trade-off entre construir as usinas nos melhores sítios e minimizar os custos de transmissão. Ou seja, acessar recursos de alta qualidade geralmente reduz o custo do quilowatt-hora das usinas de geração intermitente. Contudo, conectar usinas distantes na rede pode ser custoso. Como resultado, existe frequentemente a escolha entre acessar recursos de alta qualidade e aumentar o custo por conectar usinas distantes (IEA, 2014; Henriot, 2014). Isto é amplificado pelo baixo fator de capacidade de uma usina eólica ou solar típica, o qual pode indicar ser ineficiente construir transmissão suficiente para atender à capacidade instalada total de cada uma das usinas eólicas e solares.

Além disto, o planejamento da transmissão tem que enfrentar um círculo vicioso: tanto a nova geração só é disponível para ser construída se as linhas de transmissão estão disponíveis, quanto a transmissão só pode ser construída se houver geração prevista. A dependência locacional das fontes intermitentes renováveis de energia é um desafio ainda maior se considerarmos que a linha de transmissão pode prover capacidade para a produção de energia em um país ou estado, passar por outro, e ser consumida ainda em um terceiro. Estas disparidades na capacidade de geração, localização da transmissão e tamanho da carga em localidades diferentes pode tornar o planejamento da transmissão para a conexão das fontes energéticas renováveis contencioso e complexo; sobretudo no que diz respeito à alocação de custos (IEC, 2012).

2.4 Necessidade de geração flexível complementar

Como já mencionado anteriormente, os operadores do sistema elétrico mantêm a confiabilidade do sistema pelo constante equilíbrio da demanda de energia com a geração de uma variedade de fontes. A habilidade de um sistema elétrico em acomodar as mudanças na demanda de energia é frequentemente expressa em termos de “flexibilidade”.

A flexibilidade do gerador reflete a capacidade da fonte energética convencional de variar a geração em várias escalas de tempo. A maior parte das usinas termelétricas tem um valor máximo para a taxa de aumento da geração. A usina a carvão, por exemplo, tem geralmente uma
taxa de aumento da geração de 1,5% a 3% da capacidade por minuto. As usinas a carvão não foram projetadas para uma operação flexível; assim, quanto maior a taxa de aumento da geração, maior o custo. O mesmo pode ser dito das usinas nucleares, cuja lucratividade cai drasticamente em comparação com uma geração flexível. As usinas a gás natural possuem uma flexibilidade maior. Elas têm uma taxa de aumento da geração maior, cerca de 8% da capacidade por minuto. Assim, apesar destas usinas terem um custo variável mais elevado, elas são geralmente competitivas com outras tecnologias quando considerado o mesmo fator de capacidade (MIT, 2011).

A flexibilidade do gerador é também função do ponto mínimo de operação, abaixo do qual a usina não pode operar de forma estável. Devido ao fato de certas usinas não poderem partir ou parar rapidamente, elas são forçadas a permanecer ligadas e operando acima de um nível mínimo de geração. A restrição de geração mínima é fruto também da necessidade do sistema ter que manter uma reserva operativa, a qual é necessária para a estabilidade da frequência; isto é, a capacidade do sistema elétrico manter-se operacional após um descasamento repentino entre a geração e a carga. Esta função é geralmente exercida por térmicas em funcionamento parcial e/ou usinas hidrelétricas (Denholm, 2016).

As frequentes partidas e paradas de uma usina, bem como sua operação parcial, reduzem a eletricidade por ela produzida se comparada com outras usinas que operam na base; o que vai aumentar o seu custo e reduzir a sua lucratividade.

Além disto, o custo variável relacionado à geração eólica e solar é muito baixo. Assim, na ausência de um crescimento da demanda ou fechamento de alguma usina, a integração adicional de geração elétrica só pode ser efetuada com a redução da participação da geração das plantas incumbententes no mercado. Ou seja, a geração elétrica de fontes renováveis variáveis de baixo custo desloca as usinas com custo variável mais alto para fora do mercado, reduzindo o preço de mercado. Neste cenário, se torna mais difícil para as termelétricas recuperarem seus custos, porque dispõem de menos produção (geração de energia) para amortizar o seu custo de capital. Plantas com alto custo de capital e baixo custo variável são as que sofrem o maior impacto.

2.5 Contribuição Decrescente para Adequabilidade do Sistema Elétrico

A adequabilidade do sistema elétrico indica se existe uma capacidade instalada suficiente para atender à carga dado um nível de confiabilidade. Esta adequabilidade é atingida com a atuação conjunta de vários geradores com características diferentes.

O *capacity credit* é a contribuição que um dado gerador proporciona para a adequabilidade do sistema elétrico como um todo. Ou seja, é a quantidade adicional de carga que pode ser atendida devido ao despacho de uma determinada usina (Keane et al, 2011). Assim, de uma forma mais
geral, o *capacity credit* da fonte eólica ou solar pode ser considerado como a quantidade de recursos convencionais (principalmente térmicas) que poderia ser reduzida pela geração de energia renovável intermitente sem reduzir a confiabilidade do sistema (Castro and Ferreira, 2001). Este conceito é fundamental para se avaliar o risco de se ter um déficit de capacidade para atender ao sistema.

Vários estudos tentaram medir o *capacity credit* das energias eólica e fotovoltaica. Apesar da variedade de metodologias aplicadas, os resultados destes estudos indicam uma tendência de redução significativa do *capacity credit* das energias eólica e fotovoltaica conforme aumenta a sua penetração no sistema (Mills and Wise, 2012b; NREL, 2013; DENA, 2005).

O *capacity credit* de uma usina solar varia em função da tecnologia (fotovoltaica ou termosolar); de ter ou não armazenamento; de sua configuração (fotovoltaicas com tracking versus fixas); e do comportamento da carga (horário da ponta). Estudos conduzidos por Mill and Wise (2012b) indicam que o *capacity credit marginal* de usinas fotovoltaicas fixas ou com tracking e usinas termosolares sem armazenamento pode cair, mesmo com baixos níveis de penetração. A capacidade marginal de crédito cai para 30% ou menos com níveis de penetração superiores a 10% (Figura 1).

Figura 1: Estimativas do capacity credit das usinas fotovoltaicas com o aumento da sua penetração (a linha pontilhada é o capacity credit médio e a linha contínua é o capacity credit incremental)

![Diagrama de capacity credit](image)

Notes:
- GE Energy (2010) and Jones (2012) use PV profiles from a mixture of fixed and tracking PV.
- The scenarios in GE Energy (2010) with PV also have increasing penetrations of CSP with thermal storage and wind.
- In Perez et al. (2008), fixed PV with 30-degree tilt is assumed. Capacity credit is based on their estimate of the effective load-carrying capability (ELCC) of PV. Capacity penetration is converted to energy penetration assuming: NV Power load factor is 42% (based on NV Energy 2012 IRP), NV Power PV capacity factor is 23% (estimated from NREL Solar Advisor Model), PGE load factor is 58% (based on PGE 2009 IRP), and PGE PV capacity factor is 17% (based on PGE 2009 IRP).
- In Pelland and Abboud (2008), capacity penetration is converted to energy penetration assuming that Toronto’s load factor is 55%. Fixed PV with 30 degree-tilt is assumed. We show only the results from a south-facing orientation.
- Capacity penetration used in R.W. Beck (2009) is converted to energy penetration assuming: APS load factor is 48% (based on APS 2012 IRP), APS tracking capacity factor is 30%, and APS fixed capacity factor is 23% (based on NREL Solar Advisor Model)

Análises feitas para a energia eólica mostram também uma redução do capacity credit com o aumento da penetração da fonte (DENA, 2005; Gross et al., 2007; Holttinen et al., 2011). Para baixos níveis de penetração, o capacity credit da energia eólica é próximo da produção média (fator de carga) durante o período considerado (EWEA). Com o aumento dos níveis de penetração, o seu capacity credit diminui; significando que uma nova planta adicionada a um sistema, com alta participação de fontes eólicas, irá substituir menos capacidade de geração convencional que as primeiras plantas adicionadas ao sistema (Figura 2).

Figura 2: Relação entre a Capacidade Instalada das Usinas Eólicas e o Capacity Credit na Alemanha

!Wind power configuration 2003

!Wind power configuration 2020
2.6 Risco de Necessidade de Corte da Geração

Quando o crescimento da demanda e o aumento da geração das fontes renováveis intermitentes estão negativamente correlacionados, o aumento da demanda necessariamente leva a que as demais plantas aumentem sua geração de forma a garantir o equilíbrio entre oferta e demanda. Por outro lado, no caso de queda da demanda, a geração de outras usinas deve ser reduzida. Quando a carga líquida (carga normal menos geração fotovoltaica e eólica) cai abaixo de zero, a geração das fontes renováveis variáveis tem que ser cortada, estocada ou exportada; evitando que ela seja maior que a demanda total da área. Como já mencionado antes, sem uma intervenção, os geradores e certos motores conectados à rede podem aumentar a velocidade de rotação, o que pode danificá-los. De forma a evitar a geração em excesso, o operador do sistema pode ter que cortar a geração.

Ora, cada unidade de geração variável cortada representa uma unidade não vendida para a rede e uma unidade de consumo de combustível fóssil não evitado. Conforme a quantidade de cortes aumenta, o benefício global da energia renovável intermitente adicional pode cair, ao ponto das instalações adicionais não compensarem o custo (Cochran et al. 2015; Denholm, 2016).

Portanto, conseguir lidar com as variações na carga líquida em momentos em que a geração é alta e a demanda é baixa é um importante desafio para se aproveitar integralmente a geração solar e eólica.

3 Desafios para Penetração das Fontes Renováveis na América Latina: Brasil, Chile e Uruguai

Como vimos acima, são inúmeros os desafios que os tomadores de decisão têm que levar em conta em uma política de incentivo às fontes renováveis intermitentes de energia. Contudo, estes desafios podem ser maiores ou menores em função da característica do sistema elétrico de cada país.

3.1 Brasil

3.1.1 Características do Setor Energético Brasileiro

O Brasil é um país continental, abrangendo uma área territorial de mais de 8 milhões km². É o país de maior extensão da América do Sul e o quinto do mundo: apenas a Rússia, o Canadá, a República Popular da China e os Estados Unidos são mais extensos. O espaço geográfico brasileiro é considerado excepcionalmente privilegiado, já que é quase inteiramente aproveitável. O Brasil
é um país com mais de 200 milhões de habitantes, e se destaca como a quinta nação mais populosa do mundo.

A matriz energética brasileira conta com importante participação das fontes energéticas renováveis (hidroeletricidade, biocombustíveis, energia eólica etc.). Em 2015, cerca de 41% da sua energia provinha de fontes renováveis de energia. Apesar da grande participação das fontes renováveis, o petróleo ainda continua sendo a principal fonte energética do país, representando cerca de 37% da matriz energética. O Brasil apresentava até recentemente uma vulnerabilidade importante, decorrente de sua dependência da importação de petróleo para atender à sua crescente demanda interna, situação comum entre países em desenvolvimento. Esta situação praticamente se inverteu após a descoberta de grandes reservas de petróleo e gás natural na plataforma continental brasileira, na profunda camada do pré-sal, o que abre a possibilidade do país passar a exportar em breve tais produtos.

Os produtos da cana-de-açúcar aparecem como a segunda fonte energética mais consumida no Brasil, com participação de 17% da matriz energética. O Brasil apresenta reconhecido potencial para a produção agrícola. A dimensão continental de seu território e a diversidade geográfica que nele se encontra, representada pela variedade climática e exuberante biodiversidade, além da presença de um quarto das reservas superficiais e subterrâneas de água doce do mundo, permite ao país utilizar a biomassa para a geração de energia.

O gás natural é a terceira fonte mais importante no Brasil, com uma participação de cerca de 14% da matriz energética. A maior parte das reservas provadas brasileiras de gás natural está localizada no mar e é predominantemente associada ao petróleo. A região Sudeste do Brasil concentra 79% das reservas provadas (ANP, 2015). Além da produção nacional de gás, encontram-se em operação os terminais de regaseificação da Baía de Guanabara (RJ), Baía de Todos os Santos (BA), e de Pecém (CE); com capacidades de 20, 14 e 7 milhões de m³/d, respectivamente. As importações brasileiras de gás natural liquefeito (GNL) são realizadas principalmente no mercado spot, o que faz com que sua origem seja variada (Tolmasquim, 2016a). Em 2014, por exemplo, a maior parte do GNL importado pelo Brasil (56%) teve origem na Nigéria e em Trinidad e Tobago (ANP, 2015). As importações provenientes da Bolívia, via Gasoduto Bolívia-Brasil (GASBOL), são da ordem de 30 milhões de m³/d de gás natural.

3.1.2 Características do Setor Elétrico Brasileiro

O sistema elétrico brasileiro possui características singulares que norteiam as decisões da operação e do planejamento. Merecem destaque: dimensões continentais; predominância de geração hidrelétrica com grande participação de usinas com capacidade de regularização; diversidade hidrológica das bacias hidrográficas, permitindo uma complementariedade entre as regiões; interligação plena entre as regiões a partir de um extenso sistema de linhas de
transmissão de longa distância; participação de diversos agentes com usinas no mesmo rio, bem como linhas de transmissão operadas por agentes distintos; longo tempo de maturação e construção das grandes obras de geração e transmissão de energia (Tolmasquim, 2016b).

Considerando apenas os empreendimentos de geração do Sistema Interligado Nacional (SIN); incluindo a parcela de Itaipu vendida pelo Paraguai, o Brasil dispunha, em 2015, de um sistema gerador com capacidade instalada de 141 GW. A grande participação das fontes renováveis, principalmente da fonte hidráulica é uma das características centrais do setor elétrico brasileiro (Figura 3). Apesar da participação das hidrelétricas representarem um pouco mais de 60% da capacidade instalada, ela geralmente representa mais de 80% da geração de eletricidade; dado que seu baixo custo variável a torna prioritária no despacho elétrico. Contudo, como 2015 foi um ano excepcionalmente seco, a sua participação naquele ano foi de apenas 65% (Figura 4).

Figura 3: Capacidade Instalada por Fonte Energética no Brasil, 2015

Figura 4: Geração de Eletricidade por Fonte Energética no Brasil, 2015

A estrutura da rede de transmissão do Sistema Interligado Nacional é extensa e complexa, e cobre praticamente todo o país, como pode ser visto na Figura 5. Em 2014, a rede de transmissão, em tensão acima de 230 kV, somava mais de 116.000 km de extensão.
Figura 5: Sistema de Transmissão Brasileiro, 2015

O sistema elétrico é praticamente todo interligado, e a sua operação é feita por um órgão independente. O Operador Nacional do Sistema (ONS) coordena a operação das usinas geradoras e do sistema de transmissão buscando uma otimização dos recursos. Esta otimização resulta em um conjunto de ações que visam ao atendimento da carga prevista para o SIN ao menor custo; ou seja, minimizando a utilização da geração térmica, evitando vertimentos nos reservatórios das usinas e equalizando, na medida do possível, os custos marginais de operação entre as regiões interligadas. Esta otimização sinaliza a necessidade da utilização da geração térmica em complementação à geração hidroelétrica e da transferência de energia entre regiões ou bacias; bem como indica a adequada produção de energia por bacia, considerando as restrições de caráter ambiental e de uso múltiplo da água.

No Brasil, a produção de energia com termelétrica a biomassa é obtida principalmente através da cogeração em unidades dos segmentos industriais sucroenergético e de papel e celulose. Apesar do importante crescimento da capacidade instalada de cogeração de energia, uma parcela ainda significativa do parque instalado, especialmente do setor sucroenergético, utiliza processos industriais e centrais de cogeração de baixa eficiência; consumindo a biomassa com o
objetivo principal de atender às demandas energéticas (calor e eletricidade) da unidade, com pouco ou nenhum excedente.

O Brasil tem um gigantesco potencial de geração solar e eólica. O país está situado quase que totalmente na região limitada pelos Trópicos de Câncer e de Capricórnio, de incidência mais vertical dos raios solares. Esta condição favorece elevados índices de incidência da radiação solar em quase todo o território nacional, inclusive durante o inverno, o que confere ao país condições vantajosas para o aproveitamento energético do recurso solar. Adicionalmente, a localização próxima à Linha do Equador propicia uma baixa variabilidade intra-anual da radiação solar no Brasil. Em relação à média de longo prazo, é menor do que a observada na geração eólica ou hidrelétrica.

Da mesma forma, o Brasil tem um enorme potencial de geração eólica. O Atlas do Potencial Eólico Brasileiro (Amarante et al., 2001) aponta um potencial instalável de 143 GW. Porém, o potencial deve ser bem maior; visto o aumento da altura (superiores a 100 m), o aumento da área de varredura (maiores pás) e o melhor desempenho dos aerogeradores.

3.1.3 Perspectivas de Crescimento da ERNC no Brasil

Em 2004, o Brasil adotou um novo modelo para o setor elétrico. A contratação de novas instalações para atendimento à expansão da carga dos consumidores cativos (cerca de 70% a 75% da carga total) passou a ser feita por meio de leilões públicos. Com base em cenários de crescimento da demanda, a Empresa de Pesquisa Energética (EPE) define um plano de expansão indicativo para atender às necessidades de todos os agentes de consumo. Cabe aos investidores a decisão de construir novos empreendimentos, através de propostas de preço de venda de energia nos leilões de transmissão e de energia nova. A realização dos investimentos depende, portanto, de sua atratividade; que, por sua vez, depende da evolução esperada dos custos de geração (Tolmasquim, 2015).

Alguns incentivos ajudam a dar competitividade às ERNCs; como por exemplo, a lei que confere 50% de desconto às tarifas de uso dos sistemas elétricos de transmissão (TUST) e de distribuição (TUSD) incidindo na produção e no consumo da energia associado à geração eólica, solare biomassa.

Em 2009, o Brasil resolveu inovar e foi um dos primeiros países do mundo a passar a contratar energia eólica a partir de um modelo competitivo de leilões. Este sistema de contratação induziu os geradores a reduzir os seus preços, tornando visível o custo real dos projetos eólicos no Brasil. Nos leilões de 2011, a energia eólica foi comprada a um terço do valor de referência da contratação através do sistema de feed in tariff.
Entre 2009 e 2015, ocorreram 15 outros leilões com a contratação de 14,6 GW de parques eólicos. O desenvolvimento do mercado de energia eólica no país tem superado todas as expectativas, tanto pela significativa redução de custos ao longo dos últimos anos, quanto pelo exponencial crescimento da capacidade instalada e da instalação de novos fabricantes no Brasil.

Em 2015, o Brasil foi o quarto país do mundo que mais expandiu sua capacidade instalada de usinas eólicas. Até 2005, a capacidade instalada era praticamente inexistente; em 2016 a capacidade instalada ultrapassou 10 GW. Em 2019, considerando apenas as usinas já contratadas, o Brasil terá uma capacidade instalada de cerca de 17 GW, com mais de 500 fazendas eólicas.

Em 2016, o Congresso Brasileiro referendou o compromisso apresentado pelo governo Brasileiro na ONU de reduzir em 2025 e em 2030, respectivamente, 37% e 43% das emissões de gases de efeito estufa relativamente ao ano de 2005. Este compromisso leva em consideração todos os setores da economia; incluindo energia, agricultura, floresta, resíduos e processos industriais. No que diz respeito ao setor energético, uma das metas é a de aumentar a participação das fontes não-convencionais de energia de 9%, em 2014, para respectivamente, 23% e 24% em 2025 e 2030. Isto implica em forte expansão da capacidade instalada da geração de energia eólica, solar e a partir da biomassa.

3.1.4. Desafios para integração das fontes intermitentes ao Sistema Elétrico Brasileiro

Apesar da incerteza das afluências, o Sistema Interligado Nacional caracteriza-se pela presença de usinas hidrelétricas com grandes reservatórios de regularização, o que o transforma, juntamente com o parque termelétrico instalado, em um sistema predominantemente composto por fontes controláveis e despachadas pelo ONS. Com a inserção na matriz energética brasileira das fontes não-controláveis, com diferentes perfis de geração, os reservatórios das hidrelétricas assumem importância cada vez maior. Isto exige uma análise cuidadosa da variação do grau de dependência do SIN em relação aos reservatórios das hidroelétricas e das políticas de operação para o atendimento, tanto à carga de energia elétrica ao longo dos meses, quanto à demanda de potência a qualquer hora.

A diminuição da capacidade de regularização do SIN, em virtude da notória dificuldade para construir grandes reservatórios, sobretudo na região da bacia amazônica; e a expansão significativa das fontes não-controláveis, com destaque para aquelas intermitentes (eólica e solar fotovoltaica), traz um grande desafio à operação futura do SIN.

A maioria das usinas viabilizadas recentemente é enquadrada na categoria “fio d’água”; ou seja, com reservatórios capazes de armazenar água por apenas algumas horas ou dias. A maioria das usinas viáveis no horizonte decenal está localizada em bacias inexploradas, para as quais não há
previsão de instalação de usinas com reservatórios de regularização e; portanto, não contribuindo com o incremento de energia armazenável. Apesar do aumento expressivo na capacidade instalada de usinas hidrelétricas nos próximos dez anos, o acréscimo da capacidade de armazenamento é de apenas 2,6 GW médios neste mesmo período; o que corresponde a, aproximadamente, 1% do total existente em 2015 (Tolmasquim, 2016). A Figura 6 compara o crescimento da energia armazenável máxima do SIN e o crescimento do mercado de energia, mostrando um crescimento do mercado muito maior que o aumento da capacidade de armazenamento.

Figura 6: Crescimento do Mercado de Energia do SIN x Energia Armazenável Máxima

![Gráfico mostrando crescimento do mercado de energia do SIN x energia armazenável máxima](image)

Fonte: EPE (2015)

A fim de demonstrar os desafios a serem enfrentados pela concomitante redução da capacidade de armazenamento do sistema hidrelétrico e o aumento da participação das fontes renováveis, o Plano Decenal de Energia 2024 fez uma simulação do sistema considerando as fontes não-controláveis. Nesta simulação, as fontes não-controláveis foram divididas em três grupos: o primeiro grupo composto pelas fontes eólica, solar, biomassa e PCH (chamadas de “outras fontes renováveis” – OFR); o segundo grupo composto pela energia incremental às usinas hidrelétricas a fio d’água e o terceiro grupo composto pela geração térmica mínima (relacionada à inflexibilidade contratual das usinas), visto que não há decisão sobre seu despacho.

No gráfico elaborado pela EPE (Figura 7), define-se o mercado líquido como o mercado remanescente a ser atendido pelas fontes controláveis, ou seja, é o mercado total do SIN abatido das parcelas de geração não-controlável. Observa-se que ocorre uma mudança no perfil da curva
do mercado total do SIN (curva cinza tracejada) para o mercado líquido (curva preta). Essa mudança de perfil indica que, embora a maior demanda de energia do SIN ocorra no período úmido, a maior demanda a ser atendida por fontes controláveis ocorre no período seco. Dessa forma, será necessário um maior deplecionamento dos reservatórios neste período, tradicionalmente marcado por baixa afluência; e/ou maior acionamento de usinas termelétricas. Já nos meses de maior afluência, o mercado para as fontes controláveis tende a ser reduzido, aumentando assim a possibilidade de maior enchimento dos reservatórios e também de vertimentos.

Figura 7: Mercado Líquido de Energia no SIN para Fontes de Energia Controláveis

![Mercado Líquido de Energia no SIN para Fontes Controláveis PDE 2024](image)

Legenda: OFR SIN: Expectativa de geração de outras fontes renováveis; P5 (EFIOL): Geração hidroelétrica em cenário de afluência hidrológica baixa; GTmin: Total de geração térmica inflexível

Fonte: PDE (2015)

A maior interconexão entre sistemas, o que permite receber energia em momentos de déficit e exportar em momentos de extrema produção, é uma das soluções possíveis. As hidroelétricas, além de regularem o sistema, funcionam como energia de base. Já as linhas de transmissão atuam para escoar a energia entre subsistemas (Tolmasquim, 2016b). Contudo, o novo papel das hidrálicas como acompanhamento da geração renovável intermitente, para além do seu papel de acompanhamento da carga (e do erro de previsão de carga), coloca em questão dois pontos principais (Tolmasquim, 2016b): a) até que ponto se pode alterar a geração e a operação das hidroelétricas para garantir grandes penetrações de renováveis, e b) qual seu novo valor neste contexto?
3.2 Chile

3.2.1 Características do Setor Energético Chileno

O Chile tem uma superfície de 756.945 km2. O país faz fronteira com o Peru, ao norte; com a Bolívia e Argentina a este; com o Oceano Pacífico a oeste e ao sul; e com o Território Antártico, também ao sul. O Chile tem uma população de cerca de 18 milhões de habitantes, sendo que os recursos naturais (cobre, produtos agrícolas e pescados) são o pilar da economia Chilena.

O sistema energético Chileno é atendido, principalmente, por fontes fósseis de energia (petróleo, gás natural e carvão), os quais correspondem a quase 70% da energia primária total suprida. A segurança energética é uma questão central, já que o país importa a maior parte do petróleo, gás natural e carvão consumidos e é vulnerável à volatilidade de preços e à interrupção de fornecimento.

O petróleo é a principal fonte de energia, usado sobretudo como combustível para o transporte, mas também como substituto para o gás natural na geração de energia elétrica. O carvão é utilizado extensamente na geração de energia elétrica, principalmente na indústria mineira. A biomassa, em especial a lenha, é a principal fonte renovável de energia, utilizada sobretudo para o aquecimento residencial. A hidroelétrica é a principal fonte renovável utilizada para a geração de eletricidade; contudo, representa apenas 5% da energia primária total suprida.

O Chile tem quatro gasodutos que o ligam a Argentina, fruto do período de abundância de gás natural barato na Argentina. Entre 1995 e 2004, a importação deste gás levou a que as indústrias que utilizavam petróleo e os clientes comerciais fizessem uma conversão maciça para gás e que o país construísse nove centrais de ciclo combinado, somando 3.500 MW. Contudo, a situação muda, ao final de 2004, quando a Argentina, em face de uma grave crise energética, prioriza o abastecimento de gás para o mercado interno. A brusca redução da disponibilidade de gás Argentino leva o Chile a investir em plantas de gasificação na zona central (Quintero) e norte (Antofagasta) do país (CAF, 2015).

3.2.2 Característica do Sistema Elétrico Chileno

O Chile tem quatro sistemas elétricos separados: o Sistema Interligado Central (SIC), o qual atende a parte central do país; o Sistema Interligado do Norte Grande (SING), que atende as regiões mineiras desérticas do Norte; e os sistemas de Aysén e Magalhães, os quais atendem pequenas áreas no extremo sul do país. Eles representam respectivamente; 79,1%; 20,1% e 0,8% do mercado (CNE, 2016).
O SIC possui instalações com grande capacidade de transmissão, sendo que 62% corresponde a linhas de 220 kV ou 110 kV. Conta também com um sistema de 500 kV, o único com este nível de voltagem em operação no país, e que representa 5% do sistema interligado central. O SIG, apesar de não contar com linhas de 500 kV, tem uma quantidade maior de linhas de 220 kV ou 110 kV, cerca de 84% do total das linhas de transmissão deste sistema.

A capacidade instalada total do sistema elétrico Chileno é de 19.742 MW, sendo que 99% está localizada no SIC e SING. Cerca de 58% desta capacidade instalada é de fontes não-renováveis, sendo que as termelétricas a carvão, gás natural e diesel correspondem, cada uma, a cerca de um terço deste total. As usinas a diesel, por terem um combustível muito caro, só são despachadas em períodos secos ou para atender a ponta do sistema. Assim, a sua participação no total gerado é de apenas 3%, o que é compensado pela geração na base das usinas a carvão; as quais apesar de representarem apenas 22% da capacidade instalada, são responsáveis por 44% da geração de eletricidade (Figura 8 e Figura 9).

Figura 8: Capacidade Instalada por Fonte Energética no Chile, 2015

Figura 9: Geração de Eletricidade por Fonte Energética no Chile, 2015

Fonte: CNE

Apesar do Chile ser um país bem-dotado em recursos naturais, a participação das fontes renováveis na geração de energia elétrica vem caindo ao longo dos anos. Nos anos oitenta, as hidrelétricas eram responsáveis por 80% da geração de energia. Contudo, ao final de 2015 as hidrelétricas, apesar de majoritárias na matriz elétrica, representavam 33% da geração total de eletricidade (Figura 9).

3.2.3 Perspectiva de Crescimento das ERNCs no Chile

O maior fator catalizador das mudanças no setor energético Chileno foi a crise a partir da diminuição das importações de gás da Argentina, a partir de 2004, o que levou a uma falta de energia e disparada dos preços. O aproveitamento das fontes domésticas renováveis passou a
ser considerado fundamental em um país pobre em recursos fósseis e altamente dependente de importação.

Com vastos desertos e montanhas, 6.440 Km de costa com bons ventos, 137 vulcões ativos e possibilidade de geração geotérmica; além das condições ideais do deserto do Atacama, um dos mais secos e menos nublados do mundo para projetos solares, fazem do Chile um país com grande potencial de desenvolvimento das energias renováveis.

Em janeiro de 2010 entrou em vigor no Chile a Lei ERNC (Lei N° 20.257), que estabelece que as empresas de geração de energia, para atenderem às empresas distribuidoras ou aos consumidores livres, têm que ofertar, por meio de usinas próprias ou de terceiros, uma percentagem das energias renováveis não-convencionais. Em outubro de 2013 foi promulgada a Lei 20/25 (Lei N° 20.698) que estabeleceu que em 2025, a geração deverá ter uma participação de 20% de ERNCs. De forma a atender esta meta, a Lei 20/25 modificou as cotas estabelecidas anteriormente, aumentando a participação de ERNCs que devem ser ofertadas pelos geradores (Tabela 1). Estas metas têm sido anualmente ultrapassadas (Figura 10), de tal forma que ao final de 2015, a geração de ERNCs atingiu um valor superior a 6.000 GWh e a capacidade instalada já correspondia a 10% da capacidade instalada do país. (Ministerio de Minas, 2015a).

No final de 2013, o Chile introduziu o mecanismo de leilões para a compra de ERNCs. Assim, o Ministério de Energia passou a efetuar licitações públicas anuais para a provisão de energia provenientes de fontes renováveis não-convencionais. As quantidades de energia contratadas nos leilões se destinam ao cumprimento das metas estabelecidas pela Lei 20/25.

A tendência é que as fontes renováveis, e em especial as ERNCs, cresçam nos próximos anos. Ao final de 2015, o governo Chileno lançou o Plano Energia 2050, que estabelece como diretriz a implementação de medidas necessárias para que as energias renováveis correspondam a 60% da geração de eletricidade em 2035 e a pelo menos 70% em 2050. Para formulação deste Plano foram constituídos vários grupos de trabalho. O grupo que tratou das ERNCs projetou cenários de longo prazo para determinar níveis plausíveis de penetração das ERNCs na expansão dos principais sistemas interligados, SIC e SING. Os resultados para 2035 indicam que as ERNCs podem chegar a constituir 40% da geração do país (Ministério de Energia, 2015).

Tabela 1: Participação das ERNCs na Oferta de Eletricidade das Empresas Geradoras

<table>
<thead>
<tr>
<th>Year</th>
<th>Law 20,257</th>
<th>Law 20,698</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>5.0%</td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>5.0%</td>
<td>-</td>
</tr>
<tr>
<td>Ano</td>
<td>Taxa de Geração (GWh)</td>
<td>Taxa de Legalização (GWh)</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>2012</td>
<td>5.0%</td>
<td>-</td>
</tr>
<tr>
<td>2013</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>2014</td>
<td>5.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>2015</td>
<td>5.5%</td>
<td>7.0%</td>
</tr>
<tr>
<td>2016</td>
<td>6.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>2017</td>
<td>6.5%</td>
<td>9.0%</td>
</tr>
<tr>
<td>2018</td>
<td>7.0</td>
<td>10.0%</td>
</tr>
<tr>
<td>2019</td>
<td>7.5</td>
<td>11.0%</td>
</tr>
<tr>
<td>2020</td>
<td>8.0</td>
<td>12.0%</td>
</tr>
<tr>
<td>2021</td>
<td>8.5</td>
<td>13.5%</td>
</tr>
<tr>
<td>2022</td>
<td>9.0</td>
<td>15.0%</td>
</tr>
<tr>
<td>2023</td>
<td>9.5</td>
<td>16.5%</td>
</tr>
<tr>
<td>2024</td>
<td>10.0</td>
<td>18.0%</td>
</tr>
<tr>
<td>2025</td>
<td>10.0</td>
<td>20.0%</td>
</tr>
</tbody>
</table>

Fonte: CNE

Figura 10: Geração de Eletricidade desde a Lei das ERNCs - GWh
3.2.4 Desafios para a integração das fontes intermitentes ao Sistema Elétrico Chileno

O Plano 2050 considera que o aumento da capacidade instalada de hidroeletricidade com reservatórios é importante para permitir uma maior penetração das fontes intermitentes. O Plano destaca, também, que ainda que haja cada vez mais e melhores alternativas tecnológicas de armazenamento de energia, as hidrelétricas são mais vantajosas em termos de custo e de sua disponibilidade no país. Além disto, chama a atenção para as vantagens desta fonte de energia para o país: independência energética; flexibilidade; capacidade de regulação e os serviços adicionais que entrega ao sistema elétrico, favorecendo a incorporação de outras fontes renováveis (Ministerio de Energia, 2016). Contudo, os recursos hidrelétricos não explorados estão localizados em grande parte em áreas indígenas, regiões com alto potencial turístico ou reservas naturais, o que dificulta o seu aproveitamento (Bezerra et al., 2012).

Igualmente a diversos outros países latino-americanos que são bem-dotados em recursos hídricos, o Chile tem uma grande experiência em lidar com a variabilidade da energia hidroelétrica. Contudo, constitui-se em desafio importante aprender a operar um sistema com variabilidade de produção diária e horária como é o caso das fontes solar e eólica.

Outro desafio importante para o desenvolvimento das fontes eólica e solar é a expansão do sistema de transmissão. O potencial de desenvolvimento das energias renováveis no Chile é muito grande: Concentrador Solar Térmico – 0,5 GW; Fotovoltaica – 1,2 GW; Hidroelétrica – 13 GW e Eólica – 38 GW. Contudo, com exceção da Região de Coquimbo e do Vale Central, entre as regiões de Biobío e de Araucania, as regiões com maior potencial eólico e de maior concentração de potenciais hidroelétricos se encontram distantes do sistema de transmissão do SIC (Santana et al., 2014).

Os potenciais solar, eólico e hídrico estão concentrados em diferentes regiões geográficas: solar no Norte, eólico no Norte e na região costeira do Sul, e o hidrelétrico na pré-cordilheira e cordilheira da região Sul. O desenvolvimento conjunto de várias fontes em diferentes regiões com distintos regimes de produção é positivo para o desempenho do sistema elétrico. Contudo, implica num desafio para a expansão do sistema de transmissão (Figura 11).
As restrições do sistema de transmissão na região norte do SIC impedem que se aproveite toda a energia disponível nos projetos de energia renovável em várias horas do dia. De acordo com CDEC-SIC, deixou-se de aproveitar 18 GWh em janeiro de 2016 e 18,2 GWh em fevereiro da energia gerada por parques eólicos e solares por falta de capacidade de transmissão. Portanto, as restrições de transmissão se constituem em um dos maiores obstáculos técnicos que o Chile deve superar para o incremento da capacidade de energias renováveis.

Um passo importante para a melhoria do sistema de transmissão é a linha atualmente em construção, com uma extensão de aproximadamente 600 Km entre Mejillones; na região de...
Antofagasta, até Cardones; em Caiapó, que permitirá interconectar os sistemas elétricos SIC e SING. Isto possibilitará que se aproveite a capacidade de regularização dos reservatórios das hidrelétricas como uma forma de aumentar a flexibilidade do sistema elétrico Chileno, e facilitar a introdução das fontes de energia solar e eólica no norte do país.

As interconexões da rede de transmissão com os países vizinhos também seriam fundamentais para o desenvolvimento das fontes renováveis intermitentes no país. Como dito anteriormente, o Chile tem um grande potencial solar no norte do país, que se complementa muito bem com as hidrelétricas do Peru, Equador e Colômbia. Uma interligação entre o Chile e o Peru permitiria a exportação dos excedentes de energia geradas pelas ERNCs.

Ao Sul, o Chile já intercambia energia com a Argentina através da linha entre Salta e Mejillones. Novas linhas de transmissão entre os dois países seriam importantes para um maior desenvolvimento da energia solar no sul do país.

Ao final de 2015, o Ministerio de Energia publicou um importante relatório referente aos impactos técnicos e econômicos de uma penetração massiva de ERNC variável na operação de curto prazo (Ministerio de Energia, 2015b). O estudo corroborou que é factível tecnicamente, observada certas condições, operar o sistema elétrico com cerca de 68% de fontes renováveis na geração anual de energia elétrica. Deste total, as ERNCs poderiam representar mais de 42% da geração e as fontes variáveis eólica e fotovoltaica poderiam alcançar uma participação de cerca de 30% do total.

Contudo, a incorporação massiva de energia renovável intermitente gerará um uso mais intensivo do parque térmico e hidrelétrico. A fim de que as ERNCs de geração variável não aumentem os custos operacionais é preciso aumentar a flexibilidade do atual parque térmico. Em um sistema com participação crescente de fontes variáveis, os parâmetros operacionais das usinas térmicas são de suma importância para aumentar a flexibilidade do sistema.

O estudo assinala ainda, que é importante assegurar a gestão conjunta, de forma eficiente, da futura interconexão SIC-SING, o aperfeiçoamento dos prognósticos, a melhora dos procedimentos operativos e o aumento da disponibilidade de gás para as instalações existentes, dentre outros.
3.3 Uruguai

3.3.1 Características do Setor Energético Uruguaio

O Uruguai é um dos menores países da América do Sul, com uma superfície de 176.215 km² e cerca de 3,5 milhões de habitantes. O país faz fronteira ao sul com o Rio de la Plata e o Oceano Atlântico, ao norte com o Brasil, e a oeste com a Argentina.

O Uruguai é um país pobre em recursos fósseis (gás natural, petróleo e carvão), mas rico em recursos energéticos renováveis, em especial o vento. Em 2015, as fontes de origem renovável tiveram uma participação de 57% na matriz energética, com destaque para a biomassa e a hidroeletricidade, que representaram respectivamente, 40% e 14% da oferta total de energia primária. Entre 2010 e 2015, houve um crescimento de 44% da oferta de energia renovável, sobretudo devido ao crescimento significativo das fontes eólica e biomassa. Desde 2010, o Uruguai conta com a produção de etanol e biodiesel, os quais são utilizados principalmente no setor de transportes, misturados à gasolina e ao diesel, respectivamente. Apesar do importante crescimento da fonte eólica, e seu ganho de importância na matriz elétrica, sua participação na oferta total de energia primária ainda é relativamente baixa, cerca de 3% em 2015.

O petróleo é a principal fonte energética fóssil da matriz energética, com 42% de participação. O gás natural representa apenas 1% da oferta primária de energia em decorrência das dificuldades encontradas para a sua importação. Uruguai e Argentina estão conectados por um gasoduto com uma capacidade de 6 milhões m3/dia. Contudo, a crise energética na Argentina levou a uma restrição física no fornecimento e a um aumento do preço do gás, restringindo fortemente o uso deste combustível.

Dado a necessidade de gás, tanto para os usos não-elétricos como para complementar a geração de electricidade a partir de fontes renováveis, o Uruguai resolveu construir uma planta de gaseificação (Terminal GNL del Plata). O terminal terá um quebra-mar, um gasoduto marítimo, um gasoduto terrestre e uma unidade de gaseificação e armazenamento flutuante com capacidade de 263.000 m3. O terminal de GNL del Plata terá uma capacidade máxima de 10 Mm3/d. O terminal se conectará com o gasoduto Cruz del Sur, que tem seções marinas e terrestres. As operações comerciais estão programadas para começar em 2018.

3.3.2 Características do Setor Elétrico Uruguaio

O sistema elétrico do Uruguai é composto de uma rede de transmissão de 770 km de linhas com 500 kV e 3.549 km de linhas de 150 kV que interliga as usinas de geração com quase toda a totalidade das capitais e principais centros de consumo (Uruguay XXI, 2014). Cerca de 80% da
demanda de eletricidade se encontra no sul do país, sobretudo na capital Montevideo, e na região Este, incluindo toda a costa balneária até a fronteira com o Brasil.

O sistema elétrico Uruguaio está interligado a Argentina através de Salto Grande (2.000 MW). Esta interconexão é fundamental, por interconectar o sistema elétrico Uruguaio a um sistema de maior porte, o que confere robustez ao sistema elétrico Uruguaio. Ela tem possibilitado o intercambio energético entre ambos países e o seu uso em caso de emergência em qualquer um dos sistemas ou em situações de déficit hídrico. Além disto, ajuda a otimizar a operação do sistema elétrico ao permitir, tanto que se adquira energia a preços mais convenientes, como energia hidráulica que de outra forma seria vertida.

O Uruguai está interligado ao Brasil através das linhas de transmissão Rivera - Livramento (70 MW) e San Carlos - Candiota (500 MW). A interconexão Rivera - Livramento entrou em operação em 2001 e neste mesmo ano o Uruguai transferiu energia para o Brasil, o qual passava por grave crise energética. Desde então, a interconexão tem sido utilizada sobretudo para que o Uruguai importe energia do Brasil. Inicialmente, a energia importada era de origem térmica ou de vertimentos das hidroelétricas. A partir de 2008, um acordo entre os dois países possibilitou que o Brasil forneça energia hidráulica ao Uruguai, mesmo que não originada de vertimento, a qual deve ser devolvida no período entre setembro e novembro; período seco no Brasil.

A linha de transmissão em 500 kV foi construída pela Eletrobras Eletrosul e pela UTE. Ela interconecta os sistemas Brasileiro e Uruguaio, interligando as localidades de Candiota (sul do Estado do Rio Grande do Sul) e San Carlos (próximo a Punta del Leste), onde está instalada a Conversora de Frequência de Melo. A conexão tem capacidade de transferência de potência, nos dois sentidos, de 500 MW e foi inaugurada em meados de 2016. Esta conexão é fundamental tanto para o Uruguai exportar o seu excedente de geração eólica como para importar os excedentes hidroelétricos e a geração termelétrica do Brasil.

Além de estar interconectado ao Brasil em Rivera e San Carlos, o Uruguai tem, em diversas ocasiões, utilizado a interconexão entre a Argentina e o Brasil em Garabi, de 2.100 MW, para importar a energia do Brasil; passando pela rede de transmissão Argentina e chegando ao Uruguai através de Salto Grande.

No que diz respeito à capacidade instalada de geração de energia, ao final de 2015, o Uruguai tinha uma potência instalada de 3.989 MW, sendo 72% de fontes de energia renováveis (38% hidroelétricas, 21% usinas eólicas, 11% termelétricas a biomassa e 2% usinas fotovoltaica) (Figura 12).

O potencial hidroelétrico do Uruguai foi praticamente todo explorado. A capacidade remanescente é apenas de pequenas centrais hidrelétricas. O país tem quatro usinas
hidroelétricas totalizando 1.538 MW. No rio Uruguai se encontra a usina binacional de Salto Grande (Uruguai-Argentina) com uma capacidade instalada de 1.890 MW. A metade da energia gerada pertence ao Uruguai e a outra metade à Argentina. A geração hidroelétrica no Uruguai apresenta importantes variações relacionadas ao período de chuva.

O parque termoelétrico é composto de 6 turbinas a diesel de 48 MW e quatro turbinas que podem funcionar com diesel ou gás natural. As usinas termelétricas a combustível fósil cresceram principalmente entre 2005 e 2014. Já o grande crescimento da capacidade instalada de termelétricas à biomassa ocorreu entre 2007 e 2013 com a instalação de plantas de celulose.

O Uruguai tem boas condições para geração de energia a partir dos ventos. A 100 metros de altura, o vento é praticamente uniforme e próximo a 8 m/s em todo o território do Uruguai (Ferreño, 2013). Os primeiros parques de grande porte começam a ser instalados em 2008. Desde então, o setor tem atraído um grande número de investidores tanto público quanto privados. No que tange à energia solar, apesar de ser utilizada há muitos anos no Uruguai, ela ainda não decolou como a eólica, mantendo uma participação modesta na matriz.

Como é típico em um sistema com grande capacidade hidrelétrica, em anos de boa hidraulicidade se utilizam menos as termelétricas a combustíveis fósseis. Desta forma, apesar da capacidade instalada do parque hidroelétrico ser equivalente ao termoelétrico, as hidrelétricas foram responsáveis por mais da metade da eletricidade gerada em 2015; enquanto as térmicas a combustíveis fósseis por apenas 7%. Assim, em 2015, cerca de 93% da energia elétrica gerada no Uruguai foi proveniente de fontes renováveis; sendo que a energia eólica teve uma participação relevante, sendo responsável por 15% da geração total (Figura 14).

Finalmente, vale destacar que nos últimos dez anos, houve uma outra grande modificação no setor elétrico Uruguaio, já que o país deixou de ser importador de eletricidade para ser exportador. Em 2006, 34% da demanda elétrica era suprida pelos países vizinhos; em 2015, 10% da eletricidade gerada localmente foi exportada.
3.3.3 Perspectivas de Crescimento da ERNC no Uruguai

Em 2008, o Uruguai lançou o documento “Política Energética do Uruguai 2030”, com um planejamento de longo prazo. Esta política representa um forte compromisso com as fontes energéticas renováveis e com a eficiência energética. Em 2010, esta política foi endossada por todos os partidos com representação parlamentar.

A “Energy Policy Uruguay 2030” tem como objetivo geral alcançar a soberania energética, reduzir custos, desenvolver a indústria nacional e reduzir a dependência em petróleo. O plano estabelece diretrizes estratégicas e metas para o curto (até 2015), médio (até 2020) e longo prazo (até 2030); assim como medidas para atingir esses objetivos.

Os procedimentos de desenvolvimento das ERNCs passam pela realização de leilões. O ponto de partida é a autorização do Poder Executivo para que a UTE; empresa Estatal Uruguaia que atua na geração, transmissão e comercialização de energia; compre a energia procedente de usinas novas ainda não instaladas, especificando certas características gerais (fonte ou fontes primárias, potência máxima total a contratar, potência máxima por projeto, etc.). A UTE realiza o leilão, saindo vencedores os projetos com menores preços. Os preços da energia contratada devem ser próximos dos valores de referência das distintas tecnologias, assim como, as projeções dos custos marginais de médio e longo prazo da geração de eletricidade no sistema Uruguai. Para a seleção dos vencedores é levado em conta também o conteúdo local de cada um dos projetos.

O rol de incentivo às ERNCs são relevantes. Os geradores de ERNC se beneficiam da exoneração de impostos de 90% da renda líquida tributável nos exercícios iniciados entre julho de 2009 e dezembro de 2017. Esta exoneração cai para 60% da renda líquida tributável entre janeiro de
2018 e dezembro de 2020, e para 40% entre janeiro de 2021 e 31 de dezembro de 2023. Além disto, as máquinas agrícolas e acessórios, e os equipamentos completos de geração de energia eólica se beneficiam da exoneração do imposto sobre o Valor Agregado; de maneira a facilitar os investimentos. Igualmente importante é a regra que permite às usinas de ERNC não pagarem as tarifas de utilização da rede de distribuição e de transmissão. Finalmente, vale destacar que um Fundo Setorial em energias foi criado, e que anualmente lança editais para apoio a projetos de pesquisa, desenvolvimento e inovação em energias renováveis.

Os resultados positivos da política energética Uruguaia começaram a aparecer em 2014. A energia eólica atingiu uma capacidade instalada de quase 900 MW em 2015, e deve chegar a cerca de 1.500 MW de potência instalada ao final de 2017. A geração eólica, que hoje representa 15% da geração de eletricidade no Uruguai, pode mais que dobrar de participação em 2017; já que esse país aspira a que a energia eólica represente mais de 30% da geração de eletricidade naquele ano (Casaravilla, 2016). Quanto à energia solar, apesar do importante crescimento nos últimos anos, a sua participação na capacidade total instalada ainda é bastante modesta (Figura 15 e Figura 16).

3.3.4 Desafios para integração das fontes intermitentes ao Sistema Elétrico Uruguaio

Como em todo sistema de base hidroelétrica, as incertezas na operação do sistema elétrico Uruguaio estavam relacionadas à hidrologia, à saída forçada de máquinas, ao cumprimento dos programas e prazos programados de indisponibilidades das máquinas, dentre outros. O operador estava habituado a lidar com esta incerteza ao fazer a programação de despacho das usinas.
Contudo, a incorporação das fontes eólica e solar em larga escala significa um desafio novo para o sistema elétrico.

A existência de importante capacidade instalada de hidrelétricas com capacidade de armazenamento é um fator central para a integração das fontes solar e eólica no sistema elétrico Uruguaio. O sistema hidrelétrico Uruguaio tem três usinas no rio Negro: Gabriel Terra (152 MW), que tem a maior capacidade de armazenamento do país (aproximadamente 138 dias de geração a plena capacidade); Baygorria (108 MW), que é uma usina a fio d’água; e Constitución (333 MW), cuja capacidade de armazenamento é de uns 20 dias de geração. No rio Uruguai, a usina de Salto Grande tem uma capacidade de armazenamento de 8 dias de geração a plena capacidade (Di Chiara et al., 2016).

Outro fator importante para a integração das energias solar e eólica no sistema elétrico Uruguaio é a complementaridade entre essas duas fontes. Simulações mostram que a geração solar ocorre no momento em que a energia eólica é menor. Além disso, a geração solar acompanha a demanda típica do Uruguai. Ela cresce em torno do meio-dia quando há o aumento da demanda (Figura 17). Igualmente importante para a flexibilidade do sistema elétrico Uruguaio é a sua interligação com a Argentina e o Brasil.

Figura 176: Comportamento Médio Diário da Demanda e das Fontes Eólica e Solar

Contudo, como o potencial para a construção de novas usinas hidrelétricas de grande porte com capacidade de armazenamento, e a complementaridade entre a solar e a eólica não são suficientes para garantir o suprimento, torna-se importante o desenvolvimento de alternativas que aumentem a flexibilidade do sistema elétrico.
O Uruguai, ciente deste desafio, já vem analisando algumas opções que aumentem a capacidade do sistema elétrico para receber uma quantidade maior de fontes intermitentes, tais como: o levantamento de locais adequados para a construção de usinas hidrelétricas reversíveis, a melhoria das previsões de ventos, a implementação de procedimentos de previsão da radiação solar e a introdução paulatina do transporte elétrico. Ruchansky (2015) descreve ações que vêm sendo adotadas para aumentar a flexibilidade do sistema elétrico Uruguaio, as quais sintetizamos a seguir.

No que diz respeito à operação do sistema elétrico, é importante flexibilizar os procedimentos operativos de forma a levar em conta as previsões de vento e, no futuro, de energia solar. Isto, considerando tanto o despacho de unidades próprias como o manejo das interconexões.

Como já mencionado anteriormente, uma boa previsão dos ventos é fundamental para a operação de sistemas elétricos com grande participação de energia eólica. Neste sentido, o Despacho Nacional de Cargas da UTE, entidade que opera o sistema elétrico, implementou ferramentas próprias de previsão de curta e muito curta duração da geração de energia eólica. Apesar disto, é importante, que se coteje a geração prevista com a efetivamente realizada de forma a testar à aderência do instrumento a realidade.

Tradicionalmente, para planejar a expansão da rede, a UTE utilizava cenários determinísticos, onde era considerado o pior caso para o planejamento das ampliações necessárias. Contudo, a variabilidade das energias eólica e fotovoltaica introduzem muita incerteza. Desta forma, a UTE desenvolveu uma ferramenta, utilizando o método de Monte Carlo, que permite considerar a geração renovável. O instrumento permite verificar quais partes da rede são afetadas pelo ingresso de um novo gerador, quantificando a magnitude e a probabilidade de ocorrência do impacto.

A importante penetração das energias renováveis no sistema elétrico Uruguaio pode implicar em excesso de oferta de energia em alguns períodos. Este excedente poderia ser destinado ao intercâmbio com a Argentina e o Brasil. Para isto, é fundamental adequar os acordos operativos existentes com ambos países, assim como formalizar acordos comerciais. Deve ser contemplada a possibilidade de modificação das quantidades intercambiadas, tendo em conta as previsões mais próximas ao momento do despacho. Além disto, os acordos devem prever situações em que a oferta de energia aos países vizinhos não é absorvida pelos mesmos.

Finalmente, Ruchansky (2015) cita que é recomendável que se estude a possibilidade de construção de usinas hidrelétricas reversíveis, visto que a geração da fonte eólica é maior durante a madrugada; momento em que a carga é menor. Essas plantas permitiriam que se armazene água durante a noite para ser utilizada durante o dia.
4 Comentários Finais

A América Latina é uma das regiões do mundo com maior participação da hidroeletricidade na geração de eletricidade. Em 2013, a hidroeletricidade representava mais da metade da eletricidade produzida na região (IEA, 2015). Essa alta participação da hidroeletricidade propicia grande oportunidade para a integração das ERNCs variáveis no sistema elétrico da região.

Conforme levantado pela IRENA (2016b), a combinação da hidroeletricidade com outras renováveis oferece uma vasta gama de complementaridades que facilitam a integração das fontes intermitentes com o sistema elétrico. Assim, por exemplo, os reservatórios das hidrelétricas conferem flexibilidade ao sistema elétrico, e o seu uso para complementar as variações das ERNCs aumenta a confiabilidade do sistema elétrico. Além disso, é mais barato do que o emprego de outras tecnologias. Há também uma complementaridade sazonal, visto que no período seco; quando a geração hidráulica é menor, a geração de algumas ERNCs é maior; e vice-versa. Finalmente, vale destacar que a produção diversificada de um portfólio de energias renováveis não-despacháveis, incluído as usinas hidroelétricas a fio d’água, é menos volátil do que cada uma das usinas consideradas separadamente.

Da mesma forma que as usinas hidrelétricas ajudam a integrar as ERNCs ao sistema elétrico, as ERNCs aumentam a confiabilidade do sistema e reduzem o preço da eletricidade para o consumidor em momento de hidrologia desfavorável. De fato, quando há uma redução da geração hidrelétrica devido a uma variação climática, como por exemplo o El Niño–Southern Oscillation (ENSO), a geração de algumas ERNCs não diminui; e em alguns casos, aumenta durante estes eventos. Outro benefício potencial das ERNCs para um sistema com grande participação de hidrelétricas está associado às mudanças climáticas que podem, eventualmente, reduzir a geração das hidrelétricas. Diversificar a geração com outras fontes renováveis aumenta a resiliência de um sistema elétrico com alta participação hidroelétrica.

Apesar da participação das hidrelétricas na geração de eletricidade na América Latina ser grande, ela é distribuída desiguamente entre os países. Assim, uma maior integração dos países da região permite que países vizinhos se beneficiem da complementaridade entre a fonte hídrica e as demais fontes renováveis, conforme apontado em IRENA (2016b).

Por exemplo, na América do Sul, o aumento da participação da geração eólica no Uruguai poderia ser facilitada pelo aumento do intercambio de energia com o Brasil e a Argentina. Da mesma forma, uma eventual interligação entre Peru e Chile permitiria que ambos se beneficiassem da complementaridade entre a hidroeletricidade do Peru e a energia solar do Chile.
Da mesma forma, na América Central, o *grid regional* chamado SIEPAC provê confiabilidade e aumenta a segurança do abastecimento de cada país membro ao permitir as trocas de energia. O SIEPAC é um importante ativo para a região, que poderia permitir uma maior complementaridade entre a hidrelétrica e as demais fontes renováveis. Por exemplo, a Nicarágua poderia importar energia hidráulica da Costa Rica de forma a complementar a energia eólica; ao passo que a Costa Rica poderia importar energia da Nicarágua nos momentos de pior hidrologia. Como vimos, em sistemas elétricos com grande participação da geração hidrelétrica, como na América Latina, a integração de fontes intermitentes de energia representa menos problemas que em outras regiões do mundo. Contudo, dadas as dificuldades crescentes para a construção de novas hidrelétricas, sobretudo com reservatório, a introdução de fontes intermitentes de energia aumenta a complexidade da operação, e demanda dos tomadores de decisão ações que aumentem a flexibilidade do sistema elétrico.
5 Referências Bibliográficas

http://www.fs-unep-centre.org (Frankfurt am Main).

Henriot, A. (2014). _Economics of intermittent renewable energy sources: four essays on large-scale integration into European power systems._ Economic and finances. Université Paris Sud – Paris XI. Available at: https://halshs.archives-ouvertes.fr/tel-01018509/

Ministerio de Energía (2015b). *Mesa ERNS. Una mirada participativa del rol y los impactos de las energías renovables en la matriz eléctrica futura*, GIZ, Ministeria de Energía, December. Available at:

